On characterization of cohesive zone model (CZM) based upon digital image correlation (DIC) method

内聚力模型 数字图像相关 材料科学 牵引(地质) 刚度 有限元法 结构工程 断裂(地质) 复合材料 工程类 机械工程
作者
Xintao Huo,Quantian Luo,Qing Li,Gang Zheng,Guangyong Sun
出处
期刊:International Journal of Mechanical Sciences [Elsevier]
卷期号:215: 106921-106921 被引量:27
标识
DOI:10.1016/j.ijmecsci.2021.106921
摘要

Cohesive zone model (CZM) has been extensively applied in numerical simulation of interfacial fracture behaviors such as composite delamination and fracture of adhesive joints. Accurate and efficient identification of CZM parameters signifies an important research topic to enable reliable analysis and design of these structures. This paper aims to derive the actual traction-separation law of CZM by means of experimental measurement with only digital image correlation (DIC) technique. A double cantilever beam (DCB) specimen was employed for experimental tests and a semi-empirical analytical model was developed to associate the traction-separation law with the global loading response. Explicit formulae of the initial stiffness, maximum traction stress and damage evolution were derived. In this study, the DCB specimens bonded with a ductile adhesive layer of Araldite® 2015 were fabricated and experimentally tested. The displacement distribution of the adhesive layer was quantified as the fundamental data for identification of CZM parameters. The initial stiffness, maximum traction stress and damage evolution of CZM were identified accurately. Based upon the extracted CZM parameters in the present work, a finite element (FE) model was developed and verified with the experimental results. Furthermore, a FE model with a traditional linear damage evolution was also established for comparison, thereby demonstrating the effectiveness of the proposed method for extracting the traction-separation law of CZM. By employing the present approach, the real traction-separation law can be better presented and accurate simulation of adhesive joint can be achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cora发布了新的文献求助10
刚刚
诚心的不斜完成签到,获得积分10
1秒前
bono完成签到 ,获得积分10
1秒前
1秒前
2秒前
又要起名字关注了科研通微信公众号
3秒前
可爱的函函应助su采纳,获得10
3秒前
4秒前
澳澳完成签到,获得积分10
5秒前
5秒前
善学以致用应助纯真抽屉采纳,获得10
6秒前
6秒前
笑笑发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
9秒前
Hello应助cora采纳,获得10
9秒前
汉唐精彩完成签到,获得积分10
10秒前
10秒前
11秒前
田茂青完成签到,获得积分10
11秒前
damian发布了新的文献求助30
11秒前
11秒前
聪明芒果完成签到,获得积分10
11秒前
Vvvvvvv应助虫二先生采纳,获得10
11秒前
西大研究生完成签到 ,获得积分10
11秒前
12秒前
12秒前
呆呆完成签到,获得积分10
12秒前
左一酱完成签到 ,获得积分10
13秒前
平淡南霜发布了新的文献求助10
13秒前
Sweet关注了科研通微信公众号
13秒前
13秒前
赘婿应助wangfu采纳,获得10
14秒前
14秒前
14秒前
pipge完成签到,获得积分20
14秒前
15秒前
澳澳发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794