Differentiating movement styles in professional tennis: A machine learning and hierarchical clustering approach

运动(音乐) 聚类分析 心理学 层次聚类 人工智能 物理医学与康复 计算机科学 应用心理学 机器学习 医学 艺术 美学
作者
Brandon Giles,Peter Peeling,Stephanie Kovalchik,Machar Reid
出处
期刊:European Journal of Sport Science [Informa]
卷期号:23 (1): 44-53 被引量:12
标识
DOI:10.1080/17461391.2021.2006800
摘要

Recent explorations of tennis-specific movements have developed contemporary methods for identifying and classifying changes of direction (COD) during match-play. The aim of this research was to employ these new analysis techniques to objectively explore individual nuance and style factors in the execution of COD movements in professional tennis.Player tracking data from 62 male and 77 female players at the Australian Open Grand Slam were analysed for COD movements using a model algorithm, with a sample of 150,000 direction changes identified. Hierarchical clustering methods were employed on the time-motion and degree characteristics of these direction changes to identify groups of different COD performers.Five unique clusters, labelled "Cutters", "Gear Changers", "Lateral Changers", "Balanced Changers" and "Passive Changers" were identified in accordance with their varying speed, acceleration, degree and directionality of change features.Player COD clustering challenge previously held assumptions regarding on-court movement style, highlighting the complexity and variation in the sport's locomotion demands. In practice, the speed, acceleration, directionality and degree of change characteristics of each COD style can facilitate athlete profiling and the specificity of training interventions.HighlightsWe used machine learning techniques and cluster analysis methodology to explore the time motion characteristics of direction change skill in professional tennis.We present five unique types of change of direction style in professional tennis players. These include "Cutters", "Gear Changers", "Lateral Changers", "Balanced Changers" & "Passive Changers". These style classifications were established in accordance with their varying speed, acceleration, degree and directionality of change features.We show that the application of machine learning techniques to player tracking data can facilitate a more intricate understanding the sport's physical demands, which can be used to inform training programme design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LQS发布了新的文献求助10
2秒前
2秒前
5秒前
6秒前
香蕉觅云应助安卉采纳,获得10
6秒前
6秒前
7秒前
哇咔咔发布了新的文献求助10
8秒前
8秒前
小杨发布了新的文献求助10
9秒前
sunianjinshi完成签到,获得积分10
10秒前
10秒前
李健应助沉默安波采纳,获得10
12秒前
13秒前
luffet发布了新的文献求助10
16秒前
情怀应助小柒采纳,获得10
17秒前
18秒前
万能图书馆应助Assmpsit采纳,获得10
18秒前
20秒前
21秒前
Henry给迢迢笙箫的求助进行了留言
22秒前
赘婿应助YC采纳,获得10
23秒前
一二三完成签到,获得积分10
24秒前
634301059发布了新的文献求助10
25秒前
28秒前
桂馥兰馨完成签到 ,获得积分10
29秒前
30秒前
32秒前
沉默安波发布了新的文献求助10
33秒前
hmfyl完成签到,获得积分10
34秒前
happyness完成签到,获得积分10
34秒前
Assmpsit发布了新的文献求助10
35秒前
35秒前
荣荣完成签到,获得积分10
36秒前
36秒前
研究畜完成签到,获得积分10
36秒前
麦田稻草人完成签到,获得积分10
38秒前
开朗的菠萝头完成签到,获得积分10
38秒前
39秒前
chrissylaiiii发布了新的文献求助10
39秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142138
求助须知:如何正确求助?哪些是违规求助? 2793085
关于积分的说明 7805514
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303274
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291