亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

COPD and Asthma Differentiation using Quantitative CT Biomarkers by Hybrid Feature Selection and Machine Learning

哮喘 慢性阻塞性肺病 医学 特征选择 计算机断层摄影术 放射科 内科学 机器学习 人工智能 计算机科学
作者
Konstantina Kontogianni,Amir Moslemi,Miranda Kirby,Judith Brock,Franziska Trudzinski,Felix J.F. Herth,Amir Moslemi
出处
期刊:Imaging [Akademiai Kiado Zrt.]
卷期号:: PA1873-PA1873 被引量:1
标识
DOI:10.1183/13993003.congress-2021.pa1873
摘要

Introduction: There are considerable similarities between symptoms in chronic obstructive pulmonary disease (COPD) and asthma, and misdiagnosis can lead to inappropriate treatment. Computed tomography (CT) imaging can quantify lung disease features, and previous studies show structural differences in the airways and parenchyma features between COPD and asthma. The objective of this study was discriminate COPD and asthma using CT quantitative features and machine learning. Methods: Asthma and COPD patients were recruited from Thoraxklinik at Heidelberg University Hospital (Heidelberg, Germany). CT images were analyzed using VIDA Diagnostics. A total of 89 CT imaging features were investigated. For dimension reduction, hybrid filter and wrapper-based feature selection were used. For filter-based, factor analysis based on principal component analysis was used to select features and in the wrapper phase, particle swarm optimization was coupled with support vector machine algorithm to select the top features. Result: A total 95 subjects were investigated; n=47 asthma and n=48 COPD. There was no significant difference between the asthma and COPD participants for age (p=0.25), BMI (p=0.31) or FEV1 (p=0.43). A total of 7 imaging features were selected, and COPD and asthma were differentiated with 79% accuracy (PrecisionCOPD=87, RecallCOPD=76, F1-scoreCOPD=81, PrecisionAsthma=71, RecallAsthma=83, F1-scoreAsthma=77). Conclusion: Quantitative CT imaging can discriminate COPD and asthma patients using as few as 7 CT features with moderate accuracy. The hybrid feature selection significantly reduced the number of features and increased the machine learning performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一剑白完成签到 ,获得积分10
6秒前
。。完成签到 ,获得积分10
28秒前
charliechen完成签到 ,获得积分10
31秒前
传奇完成签到 ,获得积分10
1分钟前
过时的柚子完成签到,获得积分10
1分钟前
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
白华苍松发布了新的文献求助10
1分钟前
JamesPei应助andrele采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
充电宝应助小鲤鱼在睡觉采纳,获得10
1分钟前
小鲤鱼在睡觉完成签到,获得积分10
2分钟前
2分钟前
andrele发布了新的文献求助30
2分钟前
CHL完成签到 ,获得积分10
3分钟前
情怀应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
andrele发布了新的文献求助10
3分钟前
5分钟前
脑洞疼应助科研通管家采纳,获得20
5分钟前
华仔应助于是乎采纳,获得10
6分钟前
iehaoang完成签到 ,获得积分10
6分钟前
h0jian09完成签到,获得积分10
7分钟前
李爱国应助科研通管家采纳,获得10
7分钟前
搜集达人应助科研通管家采纳,获得10
7分钟前
JamesPei应助科研通管家采纳,获得10
7分钟前
andrele发布了新的文献求助10
7分钟前
CCC完成签到,获得积分10
8分钟前
可乐完成签到,获得积分10
8分钟前
从容芮应助CCC采纳,获得10
8分钟前
可乐发布了新的文献求助10
8分钟前
华仔应助可乐采纳,获得10
8分钟前
kuoping完成签到,获得积分10
8分钟前
斯文败类应助科研通管家采纳,获得10
9分钟前
情怀应助科研通管家采纳,获得10
9分钟前
Raunio完成签到,获得积分10
10分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784196
捐赠科研通 2444060
什么是DOI,文献DOI怎么找? 1299705
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600997