COPD and Asthma Differentiation using Quantitative CT Biomarkers by Hybrid Feature Selection and Machine Learning

哮喘 慢性阻塞性肺病 医学 特征选择 计算机断层摄影术 放射科 内科学 机器学习 人工智能 计算机科学
作者
Konstantina Kontogianni,Amir Moslemi,Miranda Kirby,Judith Brock,Franziska Trudzinski,Felix J.F. Herth,Amir Moslemi
出处
期刊:Imaging [Akademiai Kiado Zrt.]
卷期号:: PA1873-PA1873 被引量:1
标识
DOI:10.1183/13993003.congress-2021.pa1873
摘要

Introduction: There are considerable similarities between symptoms in chronic obstructive pulmonary disease (COPD) and asthma, and misdiagnosis can lead to inappropriate treatment. Computed tomography (CT) imaging can quantify lung disease features, and previous studies show structural differences in the airways and parenchyma features between COPD and asthma. The objective of this study was discriminate COPD and asthma using CT quantitative features and machine learning. Methods: Asthma and COPD patients were recruited from Thoraxklinik at Heidelberg University Hospital (Heidelberg, Germany). CT images were analyzed using VIDA Diagnostics. A total of 89 CT imaging features were investigated. For dimension reduction, hybrid filter and wrapper-based feature selection were used. For filter-based, factor analysis based on principal component analysis was used to select features and in the wrapper phase, particle swarm optimization was coupled with support vector machine algorithm to select the top features. Result: A total 95 subjects were investigated; n=47 asthma and n=48 COPD. There was no significant difference between the asthma and COPD participants for age (p=0.25), BMI (p=0.31) or FEV1 (p=0.43). A total of 7 imaging features were selected, and COPD and asthma were differentiated with 79% accuracy (PrecisionCOPD=87, RecallCOPD=76, F1-scoreCOPD=81, PrecisionAsthma=71, RecallAsthma=83, F1-scoreAsthma=77). Conclusion: Quantitative CT imaging can discriminate COPD and asthma patients using as few as 7 CT features with moderate accuracy. The hybrid feature selection significantly reduced the number of features and increased the machine learning performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中的海雪完成签到,获得积分10
1秒前
CucRuotThua完成签到,获得积分10
1秒前
QQ完成签到,获得积分10
1秒前
这个论文非写不可完成签到,获得积分10
1秒前
2秒前
ZZZpp发布了新的文献求助10
2秒前
2秒前
易伊澤发布了新的文献求助10
2秒前
饱满小兔子完成签到,获得积分10
3秒前
3秒前
共享精神应助phz采纳,获得10
4秒前
喵了个咪完成签到 ,获得积分10
4秒前
科研通AI5应助俭朴夜雪采纳,获得10
4秒前
4秒前
頑皮燕姿完成签到,获得积分10
4秒前
4秒前
丁德乐可发布了新的文献求助10
5秒前
Minkslion完成签到,获得积分10
5秒前
於松完成签到,获得积分10
5秒前
5秒前
yyyy发布了新的文献求助10
6秒前
稳重无剑完成签到,获得积分10
7秒前
wuha完成签到,获得积分10
7秒前
7秒前
欢喜从霜完成签到,获得积分10
8秒前
Orange应助LiShin采纳,获得10
8秒前
8秒前
欣慰友梅完成签到,获得积分10
8秒前
9秒前
llllllll发布了新的文献求助10
9秒前
9秒前
9秒前
CC完成签到,获得积分10
9秒前
wwuu发布了新的文献求助10
10秒前
shenyanlei发布了新的文献求助10
10秒前
一汁蟹发布了新的文献求助20
11秒前
大个应助绿麦盲区采纳,获得10
11秒前
雨齐完成签到,获得积分10
11秒前
茶艺如何发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762