Molecular simulation for physisorption characteristics of O2 in low-rank coals

物理吸附 化学 化学吸附 吸附 分子 氧气 密度泛函理论 物理化学 计算化学 热力学 有机化学 物理
作者
Bo Tan,Gang Cheng,Shuhui Fu,Haiyan Wang,Zixu Li,Xuedong Zhang
出处
期刊:Energy [Elsevier]
卷期号:242: 122538-122538 被引量:37
标识
DOI:10.1016/j.energy.2021.122538
摘要

In this paper, systematic research of the physisorption characteristics of oxygen in low-rank coals had been carried out using the Grand Canonical Monte Carlo (GCMC) and the Density Functional Theory (DFT) methods based on the assumption of no chemisorption. Firstly, the surface molecular structure parameters of five different low-rank coals were determined, the coal molecules and their unit cells structure were constructed; Secondly, Oxygen physisorption behaviour in coal molecular unit cells was simulated based on the GCMC and the Molecular Dynamics (MD) method; Finally, the physisorption parameters for oxygen physisorption at each adsorption site were simulated based on the DFT. The results show that the microporous structure of coal molecules is positively correlated with the total physisorption amount of oxygen and has an effect on the physisorption heat; oxygen is gathered around aliphatic hydrocarbons, the mutual distances of methyl and methylene to oxygen were 3.57 Å and 3.81 Å, respectively; the adsorption capacity of the low-rank coal molecules is effected by aromatic, oxygenated aliphatic hydrocarbons, and the degree of condensation of polycyclic aromatic hydrocarbons, the physisorption energy of the aromatic ring, hydroxyl and ether bonds to oxygen were −3.4790 kcal/mol, −2.9933 kcal/mol and −2.9663 kcal/mol respectively. This research will enable us to better understand the physisorption mechanism of oxygen in low-rank coals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
十九完成签到,获得积分10
1秒前
2秒前
2秒前
Survivor发布了新的文献求助30
4秒前
彪壮的慕山完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
hy完成签到 ,获得积分10
7秒前
十九发布了新的文献求助10
7秒前
7秒前
米饭给米饭的求助进行了留言
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
harriet chen发布了新的文献求助10
8秒前
秋刀鱼完成签到,获得积分10
8秒前
8秒前
友好的驳发布了新的文献求助10
8秒前
8秒前
Yuki发布了新的文献求助10
9秒前
9秒前
幻昼发布了新的文献求助10
9秒前
我好困完成签到,获得积分10
9秒前
10秒前
马小翠发布了新的文献求助10
10秒前
清浅发布了新的文献求助10
11秒前
SebastianW发布了新的文献求助10
11秒前
zho关闭了zho文献求助
11秒前
NoraZibelin2002应助BJ_whc采纳,获得30
11秒前
11秒前
12秒前
研友_bZzO08完成签到,获得积分10
13秒前
13秒前
传奇3应助冷泠凛采纳,获得10
13秒前
陈隆发布了新的文献求助10
13秒前
陈明健发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667386
求助须知:如何正确求助?哪些是违规求助? 4885345
关于积分的说明 15119791
捐赠科研通 4826177
什么是DOI,文献DOI怎么找? 2583805
邀请新用户注册赠送积分活动 1537947
关于科研通互助平台的介绍 1496059