Molecular simulation for physisorption characteristics of O2 in low-rank coals

物理吸附 化学 化学吸附 吸附 分子 氧气 密度泛函理论 物理化学 计算化学 热力学 有机化学 物理
作者
Bo Tan,Gang Cheng,Shuhui Fu,Haiyan Wang,Zixu Li,Xuedong Zhang
出处
期刊:Energy [Elsevier]
卷期号:242: 122538-122538 被引量:37
标识
DOI:10.1016/j.energy.2021.122538
摘要

In this paper, systematic research of the physisorption characteristics of oxygen in low-rank coals had been carried out using the Grand Canonical Monte Carlo (GCMC) and the Density Functional Theory (DFT) methods based on the assumption of no chemisorption. Firstly, the surface molecular structure parameters of five different low-rank coals were determined, the coal molecules and their unit cells structure were constructed; Secondly, Oxygen physisorption behaviour in coal molecular unit cells was simulated based on the GCMC and the Molecular Dynamics (MD) method; Finally, the physisorption parameters for oxygen physisorption at each adsorption site were simulated based on the DFT. The results show that the microporous structure of coal molecules is positively correlated with the total physisorption amount of oxygen and has an effect on the physisorption heat; oxygen is gathered around aliphatic hydrocarbons, the mutual distances of methyl and methylene to oxygen were 3.57 Å and 3.81 Å, respectively; the adsorption capacity of the low-rank coal molecules is effected by aromatic, oxygenated aliphatic hydrocarbons, and the degree of condensation of polycyclic aromatic hydrocarbons, the physisorption energy of the aromatic ring, hydroxyl and ether bonds to oxygen were −3.4790 kcal/mol, −2.9933 kcal/mol and −2.9663 kcal/mol respectively. This research will enable us to better understand the physisorption mechanism of oxygen in low-rank coals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiaxingwei发布了新的文献求助10
刚刚
LHL完成签到,获得积分20
刚刚
1秒前
123发布了新的文献求助10
1秒前
2秒前
西貝发布了新的文献求助10
2秒前
CodeCraft应助朴实的南露采纳,获得10
2秒前
情怀应助xxaqs采纳,获得10
2秒前
李爱国应助nieziyun采纳,获得10
2秒前
领导范儿应助wuran采纳,获得10
2秒前
龙凌音完成签到,获得积分10
3秒前
3秒前
zhou完成签到,获得积分20
3秒前
4秒前
Raskye完成签到,获得积分10
4秒前
先生范发布了新的文献求助10
4秒前
MWSURE完成签到,获得积分10
4秒前
Ashley完成签到,获得积分10
4秒前
4秒前
LYSM发布了新的文献求助10
4秒前
大胆听莲完成签到 ,获得积分10
4秒前
FlipFlops发布了新的文献求助10
5秒前
烟花应助科研通管家采纳,获得20
5秒前
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
Lucas应助斯文的寒凝采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
懒骨头兄应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
EROS完成签到,获得积分10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
zzz完成签到,获得积分10
6秒前
田様应助科研通管家采纳,获得10
6秒前
顾瑶发布了新的文献求助10
6秒前
小鹿发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629957
求助须知:如何正确求助?哪些是违规求助? 4721200
关于积分的说明 14971845
捐赠科研通 4787915
什么是DOI,文献DOI怎么找? 2556638
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478320