已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MDF-SA-DDI: predicting drug–drug interaction events based on multi-source drug fusion, multi-source feature fusion and transformer self-attention mechanism

计算机科学 特征学习 特征(语言学) 编码器 人工智能 融合 机制(生物学) 变压器 融合机制 药品 模式识别(心理学) 机器学习 医学 药理学 工程类 电压 电气工程 哲学 操作系统 认识论 脂质双层融合 语言学
作者
Shunfu Lin,Yanjing Wang,Lingfeng Zhang,Yanyi Chu,Yatong Liu,Yitian Fang,Mingming Jiang,Qiankun Wang,Bowen Zhao,Yi Xiong,Dong‐Qing Wei
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:37
标识
DOI:10.1093/bib/bbab421
摘要

One of the main problems with the joint use of multiple drugs is that it may cause adverse drug interactions and side effects that damage the body. Therefore, it is important to predict potential drug interactions. However, most of the available prediction methods can only predict whether two drugs interact or not, whereas few methods can predict interaction events between two drugs. Accurately predicting interaction events of two drugs is more useful for researchers to study the mechanism of the interaction of two drugs. In the present study, we propose a novel method, MDF-SA-DDI, which predicts drug-drug interaction (DDI) events based on multi-source drug fusion, multi-source feature fusion and transformer self-attention mechanism. MDF-SA-DDI is mainly composed of two parts: multi-source drug fusion and multi-source feature fusion. First, we combine two drugs in four different ways and input the combined drug feature representation into four different drug fusion networks (Siamese network, convolutional neural network and two auto-encoders) to obtain the latent feature vectors of the drug pairs, in which the two auto-encoders have the same structure, and their main difference is the number of neurons in the input layer of the two auto-encoders. Then, we use transformer blocks that include self-attention mechanism to perform latent feature fusion. We conducted experiments on three different tasks with two datasets. On the small dataset, the area under the precision-recall-curve (AUPR) and F1 scores of our method on task 1 reached 0.9737 and 0.8878, respectively, which were better than the state-of-the-art method. On the large dataset, the AUPR and F1 scores of our method on task 1 reached 0.9773 and 0.9117, respectively. In task 2 and task 3 of two datasets, our method also achieved the same or better performance as the state-of-the-art method. More importantly, the case studies on five DDI events are conducted and achieved satisfactory performance. The source codes and data are available at https://github.com/ShenggengLin/MDF-SA-DDI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Li发布了新的文献求助10
7秒前
guangwow完成签到,获得积分10
10秒前
笨笨青筠完成签到 ,获得积分10
13秒前
追寻的梦凡完成签到 ,获得积分10
14秒前
嘟嘟嘟嘟完成签到,获得积分10
14秒前
骞骞完成签到 ,获得积分10
17秒前
lin完成签到 ,获得积分10
18秒前
18秒前
婷安wst发布了新的文献求助10
20秒前
strelias发布了新的文献求助10
20秒前
pumpkin完成签到 ,获得积分10
21秒前
yyy发布了新的文献求助10
21秒前
SS发布了新的文献求助10
22秒前
Ava应助dichloro采纳,获得10
24秒前
24秒前
HYHY完成签到,获得积分10
25秒前
佟语雪完成签到,获得积分10
25秒前
29秒前
wanci应助strelias采纳,获得10
29秒前
研友_VZG7GZ应助strelias采纳,获得10
29秒前
29秒前
吹皱一湖春水完成签到 ,获得积分10
31秒前
龙骑士25完成签到 ,获得积分10
31秒前
SS完成签到,获得积分20
32秒前
A宇完成签到,获得积分10
34秒前
dongdoctor发布了新的文献求助10
34秒前
deswin完成签到 ,获得积分10
36秒前
科研通AI2S应助王王采纳,获得10
39秒前
40秒前
Henry应助jyy采纳,获得200
44秒前
婷安wst完成签到,获得积分20
45秒前
科研通AI2S应助漫漫采纳,获得10
45秒前
45秒前
尘南浔完成签到 ,获得积分10
46秒前
48秒前
青梅完成签到 ,获得积分10
50秒前
Leviathan完成签到 ,获得积分10
53秒前
dichloro发布了新的文献求助10
54秒前
江彪完成签到,获得积分10
58秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207659
求助须知:如何正确求助?哪些是违规求助? 2856984
关于积分的说明 8108031
捐赠科研通 2522482
什么是DOI,文献DOI怎么找? 1355756
科研通“疑难数据库(出版商)”最低求助积分说明 642234
邀请新用户注册赠送积分活动 613602