已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MDF-SA-DDI: predicting drug–drug interaction events based on multi-source drug fusion, multi-source feature fusion and transformer self-attention mechanism

计算机科学 特征学习 特征(语言学) 编码器 人工智能 融合 机制(生物学) 变压器 融合机制 药品 模式识别(心理学) 机器学习 医学 药理学 工程类 电压 电气工程 哲学 操作系统 认识论 脂质双层融合 语言学
作者
Shenggeng Lin,Yanjing Wang,Lingfeng Zhang,Yanyi Chu,Yatong Liu,Yitian Fang,Mingming Jiang,Qiankun Wang,Bowen Zhao,Yi Xiong,Dong‐Qing Wei
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:102
标识
DOI:10.1093/bib/bbab421
摘要

Abstract One of the main problems with the joint use of multiple drugs is that it may cause adverse drug interactions and side effects that damage the body. Therefore, it is important to predict potential drug interactions. However, most of the available prediction methods can only predict whether two drugs interact or not, whereas few methods can predict interaction events between two drugs. Accurately predicting interaction events of two drugs is more useful for researchers to study the mechanism of the interaction of two drugs. In the present study, we propose a novel method, MDF-SA-DDI, which predicts drug–drug interaction (DDI) events based on multi-source drug fusion, multi-source feature fusion and transformer self-attention mechanism. MDF-SA-DDI is mainly composed of two parts: multi-source drug fusion and multi-source feature fusion. First, we combine two drugs in four different ways and input the combined drug feature representation into four different drug fusion networks (Siamese network, convolutional neural network and two auto-encoders) to obtain the latent feature vectors of the drug pairs, in which the two auto-encoders have the same structure, and their main difference is the number of neurons in the input layer of the two auto-encoders. Then, we use transformer blocks that include self-attention mechanism to perform latent feature fusion. We conducted experiments on three different tasks with two datasets. On the small dataset, the area under the precision–recall-curve (AUPR) and F1 scores of our method on task 1 reached 0.9737 and 0.8878, respectively, which were better than the state-of-the-art method. On the large dataset, the AUPR and F1 scores of our method on task 1 reached 0.9773 and 0.9117, respectively. In task 2 and task 3 of two datasets, our method also achieved the same or better performance as the state-of-the-art method. More importantly, the case studies on five DDI events are conducted and achieved satisfactory performance. The source codes and data are available at https://github.com/ShenggengLin/MDF-SA-DDI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wilddeer完成签到 ,获得积分10
1秒前
2秒前
midokaori发布了新的文献求助10
3秒前
一颗有理想的蛋完成签到 ,获得积分10
3秒前
凡迪亚比给罗小球的求助进行了留言
5秒前
6秒前
共享精神应助知性的采珊采纳,获得10
7秒前
9秒前
顾矜应助andrele采纳,获得30
13秒前
13秒前
呵呵哒发布了新的文献求助10
14秒前
hhchhcmxhf发布了新的文献求助10
16秒前
Owen应助shinhee采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
19秒前
会撒娇的含巧完成签到,获得积分10
19秒前
20秒前
乐乐应助科研通管家采纳,获得10
23秒前
orixero应助科研通管家采纳,获得10
23秒前
乐乐应助科研通管家采纳,获得30
23秒前
hello2001发布了新的文献求助10
25秒前
grace完成签到 ,获得积分10
25秒前
香蕉觅云应助飞逝的冥想采纳,获得10
26秒前
28秒前
30秒前
memory完成签到,获得积分10
30秒前
忧郁的寻冬完成签到,获得积分10
32秒前
33秒前
33秒前
sxt发布了新的文献求助10
34秒前
34秒前
34秒前
34秒前
34秒前
34秒前
8R60d8应助荔枝采纳,获得10
37秒前
匆匆完成签到,获得积分0
38秒前
38秒前
Rondab应助负责冰凡采纳,获得10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956896
求助须知:如何正确求助?哪些是违规求助? 3502967
关于积分的说明 11110753
捐赠科研通 3233948
什么是DOI,文献DOI怎么找? 1787671
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802210