Quantum face recognition protocol with ghost imaging

计算机科学 算法 人工智能 面部识别系统 量子计算机 主成分分析 量子算法 量子 机器学习 模式识别(心理学) 物理 量子力学
作者
Vahid Salari,Dilip Paneru,Erhan Sağlamyürek,Milad Ghadimi,Moloud Abdar,Mohammadreza Rezaee,Mehdi Aslani,Shabir Barzanjeh,Ebrahim Karimi
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:10
标识
DOI:10.1038/s41598-022-25280-5
摘要

Face recognition is one of the most ubiquitous examples of pattern recognition in machine learning, with numerous applications in security, access control, and law enforcement, among many others. Pattern recognition with classical algorithms requires significant computational resources, especially when dealing with high-resolution images in an extensive database. Quantum algorithms have been shown to improve the efficiency and speed of many computational tasks, and as such, they could also potentially improve the complexity of the face recognition process. Here, we propose a quantum machine learning algorithm for pattern recognition based on quantum principal component analysis, and quantum independent component analysis. A novel quantum algorithm for finding dissimilarity in the faces based on the computation of trace and determinant of a matrix (image) is also proposed. The overall complexity of our pattern recognition algorithm is [Formula: see text]-N is the image dimension. As an input to these pattern recognition algorithms, we consider experimental images obtained from quantum imaging techniques with correlated photons, e.g. "interaction-free" imaging or "ghost" imaging. Interfacing these imaging techniques with our quantum pattern recognition processor provides input images that possess a better signal-to-noise ratio, lower exposures, and higher resolution, thus speeding up the machine learning process further. Our fully quantum pattern recognition system with quantum algorithm and quantum inputs promises a much-improved image acquisition and identification system with potential applications extending beyond face recognition, e.g., in medical imaging for diagnosing sensitive tissues or biology for protein identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助hhhbbb采纳,获得10
刚刚
乐乐应助wjx采纳,获得10
刚刚
傅宛白发布了新的文献求助10
刚刚
受伤的无敌完成签到,获得积分10
1秒前
玩命做科研给玩命做科研的求助进行了留言
2秒前
勤劳初雪应助嘻嘻嘻采纳,获得10
2秒前
蓝色牛马发布了新的文献求助10
2秒前
3秒前
3秒前
平淡凡柔发布了新的文献求助10
4秒前
苗条的善斓完成签到,获得积分10
4秒前
田様应助GAOBIN000采纳,获得10
4秒前
5秒前
江上清风游完成签到,获得积分10
5秒前
LiDaYang完成签到,获得积分10
5秒前
lii完成签到,获得积分10
5秒前
充电宝应助DDDANDUDU采纳,获得10
5秒前
6秒前
香蕉觅云应助满当当采纳,获得10
6秒前
赘婿应助LLL采纳,获得10
6秒前
xzf1996完成签到,获得积分10
7秒前
淡然紫寒完成签到,获得积分20
7秒前
莫宛完成签到,获得积分10
7秒前
眼睛大行云完成签到,获得积分10
7秒前
芮rich完成签到,获得积分10
7秒前
7秒前
明理的问柳完成签到 ,获得积分10
7秒前
7秒前
lelele完成签到,获得积分10
8秒前
从前的我完成签到,获得积分10
8秒前
星辰大海应助友好笑寒采纳,获得10
8秒前
斯文败类应助怡然的怀莲采纳,获得10
8秒前
婧婧完成签到,获得积分10
8秒前
浮游应助芽芽采纳,获得10
9秒前
糖呼噜完成签到,获得积分10
9秒前
明明发布了新的文献求助10
9秒前
9秒前
BLL发布了新的文献求助30
10秒前
jianghs完成签到,获得积分10
10秒前
皮皮怪完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572422
求助须知:如何正确求助?哪些是违规求助? 3993137
关于积分的说明 12361436
捐赠科研通 3666284
什么是DOI,文献DOI怎么找? 2020629
邀请新用户注册赠送积分活动 1054898
科研通“疑难数据库(出版商)”最低求助积分说明 942305