已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Quantum face recognition protocol with ghost imaging

计算机科学 算法 人工智能 面部识别系统 量子计算机 主成分分析 量子算法 量子 机器学习 模式识别(心理学) 物理 量子力学
作者
Vahid Salari,Dilip Paneru,Erhan Sağlamyürek,Milad Ghadimi,Moloud Abdar,Mohammadreza Rezaee,Mehdi Aslani,Shabir Barzanjeh,Ebrahim Karimi
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:10
标识
DOI:10.1038/s41598-022-25280-5
摘要

Face recognition is one of the most ubiquitous examples of pattern recognition in machine learning, with numerous applications in security, access control, and law enforcement, among many others. Pattern recognition with classical algorithms requires significant computational resources, especially when dealing with high-resolution images in an extensive database. Quantum algorithms have been shown to improve the efficiency and speed of many computational tasks, and as such, they could also potentially improve the complexity of the face recognition process. Here, we propose a quantum machine learning algorithm for pattern recognition based on quantum principal component analysis, and quantum independent component analysis. A novel quantum algorithm for finding dissimilarity in the faces based on the computation of trace and determinant of a matrix (image) is also proposed. The overall complexity of our pattern recognition algorithm is [Formula: see text]-N is the image dimension. As an input to these pattern recognition algorithms, we consider experimental images obtained from quantum imaging techniques with correlated photons, e.g. "interaction-free" imaging or "ghost" imaging. Interfacing these imaging techniques with our quantum pattern recognition processor provides input images that possess a better signal-to-noise ratio, lower exposures, and higher resolution, thus speeding up the machine learning process further. Our fully quantum pattern recognition system with quantum algorithm and quantum inputs promises a much-improved image acquisition and identification system with potential applications extending beyond face recognition, e.g., in medical imaging for diagnosing sensitive tissues or biology for protein identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得30
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
扶光完成签到 ,获得积分10
刚刚
8秒前
单薄白羊完成签到,获得积分10
10秒前
万能图书馆应助空岛与影采纳,获得30
12秒前
12秒前
hzc发布了新的文献求助10
17秒前
加油杨完成签到 ,获得积分10
17秒前
Lee完成签到 ,获得积分10
19秒前
拿铁小笼包完成签到,获得积分10
21秒前
面包小狗完成签到 ,获得积分10
23秒前
有趣的银完成签到,获得积分10
25秒前
慢慢的地理人完成签到,获得积分10
25秒前
balabala完成签到 ,获得积分10
27秒前
30秒前
Lshyong完成签到 ,获得积分10
32秒前
凤里完成签到 ,获得积分10
34秒前
joyaaa完成签到 ,获得积分10
37秒前
39秒前
39秒前
顾矜应助chenqt采纳,获得10
39秒前
41秒前
所所应助TDW采纳,获得10
42秒前
wxx发布了新的文献求助10
43秒前
六六六完成签到 ,获得积分10
43秒前
龙泉完成签到 ,获得积分10
44秒前
坐雨赏花完成签到 ,获得积分10
45秒前
norberta发布了新的文献求助10
45秒前
cao_bq完成签到,获得积分10
47秒前
PAIDAXXXX完成签到,获得积分10
51秒前
kentonchow应助单一采纳,获得10
52秒前
53秒前
54秒前
sky完成签到 ,获得积分10
57秒前
58秒前
TDW发布了新的文献求助10
58秒前
58秒前
宠物鱼塘完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
The Experimental Biology of Bryophytes 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5366311
求助须知:如何正确求助?哪些是违规求助? 4495060
关于积分的说明 13995216
捐赠科研通 4399294
什么是DOI,文献DOI怎么找? 2416641
邀请新用户注册赠送积分活动 1409380
关于科研通互助平台的介绍 1384444