Quantum face recognition protocol with ghost imaging

计算机科学 算法 人工智能 面部识别系统 量子计算机 主成分分析 量子算法 量子 机器学习 模式识别(心理学) 物理 量子力学
作者
Vahid Salari,Dilip Paneru,Erhan Sağlamyürek,Milad Ghadimi,Moloud Abdar,Mohammadreza Rezaee,Mehdi Aslani,Shabir Barzanjeh,Ebrahim Karimi
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:10
标识
DOI:10.1038/s41598-022-25280-5
摘要

Face recognition is one of the most ubiquitous examples of pattern recognition in machine learning, with numerous applications in security, access control, and law enforcement, among many others. Pattern recognition with classical algorithms requires significant computational resources, especially when dealing with high-resolution images in an extensive database. Quantum algorithms have been shown to improve the efficiency and speed of many computational tasks, and as such, they could also potentially improve the complexity of the face recognition process. Here, we propose a quantum machine learning algorithm for pattern recognition based on quantum principal component analysis, and quantum independent component analysis. A novel quantum algorithm for finding dissimilarity in the faces based on the computation of trace and determinant of a matrix (image) is also proposed. The overall complexity of our pattern recognition algorithm is [Formula: see text]-N is the image dimension. As an input to these pattern recognition algorithms, we consider experimental images obtained from quantum imaging techniques with correlated photons, e.g. "interaction-free" imaging or "ghost" imaging. Interfacing these imaging techniques with our quantum pattern recognition processor provides input images that possess a better signal-to-noise ratio, lower exposures, and higher resolution, thus speeding up the machine learning process further. Our fully quantum pattern recognition system with quantum algorithm and quantum inputs promises a much-improved image acquisition and identification system with potential applications extending beyond face recognition, e.g., in medical imaging for diagnosing sensitive tissues or biology for protein identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助yeahyeahyeah采纳,获得10
刚刚
英俊枫完成签到,获得积分10
刚刚
奖品肉麻膏耶完成签到 ,获得积分10
1秒前
无奈镜子完成签到,获得积分10
1秒前
滕茹嫣完成签到,获得积分20
1秒前
wy18567337203完成签到,获得积分10
2秒前
aceman完成签到,获得积分20
2秒前
Airi完成签到,获得积分10
2秒前
桔子完成签到 ,获得积分10
3秒前
3秒前
3秒前
陈隆完成签到,获得积分10
3秒前
shelemi发布了新的文献求助10
4秒前
Sun_Chen完成签到,获得积分10
4秒前
滕茹嫣发布了新的文献求助30
4秒前
4秒前
5秒前
Luna爱科研完成签到 ,获得积分10
5秒前
gaoyunfeng发布了新的文献求助10
5秒前
ethan2801完成签到,获得积分0
5秒前
王三歲完成签到,获得积分10
6秒前
威武的凡桃完成签到,获得积分10
6秒前
lala完成签到,获得积分10
6秒前
6秒前
6秒前
Zgrey完成签到,获得积分10
7秒前
离欢发布了新的文献求助60
7秒前
fiercecila完成签到,获得积分10
7秒前
乐乐完成签到,获得积分10
7秒前
lucy完成签到,获得积分10
7秒前
8秒前
8秒前
yurihuang完成签到,获得积分10
8秒前
阴影完成签到,获得积分10
8秒前
落寞剑成完成签到 ,获得积分10
8秒前
sfsfes完成签到 ,获得积分10
9秒前
aidier发布了新的文献求助10
9秒前
Hilda007应助xie采纳,获得10
9秒前
gezelligheid完成签到,获得积分10
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337132
求助须知:如何正确求助?哪些是违规求助? 4474409
关于积分的说明 13924084
捐赠科研通 4369249
什么是DOI,文献DOI怎么找? 2400706
邀请新用户注册赠送积分活动 1393793
关于科研通互助平台的介绍 1365629