Quantum face recognition protocol with ghost imaging

计算机科学 算法 人工智能 面部识别系统 量子计算机 主成分分析 量子算法 量子 机器学习 模式识别(心理学) 物理 量子力学
作者
Vahid Salari,Dilip Paneru,Erhan Sağlamyürek,Milad Ghadimi,Moloud Abdar,Mohammadreza Rezaee,Mehdi Aslani,Shabir Barzanjeh,Ebrahim Karimi
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:10
标识
DOI:10.1038/s41598-022-25280-5
摘要

Face recognition is one of the most ubiquitous examples of pattern recognition in machine learning, with numerous applications in security, access control, and law enforcement, among many others. Pattern recognition with classical algorithms requires significant computational resources, especially when dealing with high-resolution images in an extensive database. Quantum algorithms have been shown to improve the efficiency and speed of many computational tasks, and as such, they could also potentially improve the complexity of the face recognition process. Here, we propose a quantum machine learning algorithm for pattern recognition based on quantum principal component analysis, and quantum independent component analysis. A novel quantum algorithm for finding dissimilarity in the faces based on the computation of trace and determinant of a matrix (image) is also proposed. The overall complexity of our pattern recognition algorithm is [Formula: see text]-N is the image dimension. As an input to these pattern recognition algorithms, we consider experimental images obtained from quantum imaging techniques with correlated photons, e.g. "interaction-free" imaging or "ghost" imaging. Interfacing these imaging techniques with our quantum pattern recognition processor provides input images that possess a better signal-to-noise ratio, lower exposures, and higher resolution, thus speeding up the machine learning process further. Our fully quantum pattern recognition system with quantum algorithm and quantum inputs promises a much-improved image acquisition and identification system with potential applications extending beyond face recognition, e.g., in medical imaging for diagnosing sensitive tissues or biology for protein identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
安静玉米完成签到 ,获得积分10
1秒前
2秒前
希稀惜完成签到 ,获得积分10
2秒前
2秒前
所闻完成签到,获得积分10
3秒前
笨笨的凡梅完成签到 ,获得积分10
3秒前
4秒前
4秒前
wanci应助Bsjjsjsjjs采纳,获得10
6秒前
6秒前
ludy发布了新的文献求助10
6秒前
123发布了新的文献求助10
7秒前
赵兴杰发布了新的文献求助10
7秒前
7秒前
7秒前
净尤利安发布了新的文献求助10
8秒前
酷波er应助安然采纳,获得10
9秒前
爽哥完成签到,获得积分10
10秒前
太阳鸟完成签到 ,获得积分10
11秒前
大模型应助123采纳,获得10
11秒前
iedq完成签到 ,获得积分10
12秒前
沉默寻凝完成签到,获得积分10
12秒前
张涵晟发布了新的文献求助10
12秒前
姜茶关注了科研通微信公众号
12秒前
t通完成签到,获得积分10
13秒前
自觉的问旋应助皮皮采纳,获得10
15秒前
16秒前
www完成签到,获得积分10
18秒前
坚强的安卉完成签到,获得积分20
18秒前
赵兴杰完成签到 ,获得积分20
19秒前
陌姌发布了新的文献求助10
19秒前
21秒前
浮游应助輝23采纳,获得10
21秒前
21秒前
22秒前
18969431868完成签到,获得积分10
22秒前
希望天下0贩的0应助科研H采纳,获得50
23秒前
25秒前
科目三应助山药汤采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5182047
求助须知:如何正确求助?哪些是违规求助? 4368868
关于积分的说明 13604361
捐赠科研通 4220308
什么是DOI,文献DOI怎么找? 2314602
邀请新用户注册赠送积分活动 1313343
关于科研通互助平台的介绍 1262000