Quantum face recognition protocol with ghost imaging

计算机科学 算法 人工智能 面部识别系统 量子计算机 主成分分析 量子算法 量子 机器学习 模式识别(心理学) 物理 量子力学
作者
Vahid Salari,Dilip Paneru,Erhan Sağlamyürek,Milad Ghadimi,Moloud Abdar,Mohammadreza Rezaee,Mehdi Aslani,Shabir Barzanjeh,Ebrahim Karimi
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:10
标识
DOI:10.1038/s41598-022-25280-5
摘要

Face recognition is one of the most ubiquitous examples of pattern recognition in machine learning, with numerous applications in security, access control, and law enforcement, among many others. Pattern recognition with classical algorithms requires significant computational resources, especially when dealing with high-resolution images in an extensive database. Quantum algorithms have been shown to improve the efficiency and speed of many computational tasks, and as such, they could also potentially improve the complexity of the face recognition process. Here, we propose a quantum machine learning algorithm for pattern recognition based on quantum principal component analysis, and quantum independent component analysis. A novel quantum algorithm for finding dissimilarity in the faces based on the computation of trace and determinant of a matrix (image) is also proposed. The overall complexity of our pattern recognition algorithm is [Formula: see text]-N is the image dimension. As an input to these pattern recognition algorithms, we consider experimental images obtained from quantum imaging techniques with correlated photons, e.g. "interaction-free" imaging or "ghost" imaging. Interfacing these imaging techniques with our quantum pattern recognition processor provides input images that possess a better signal-to-noise ratio, lower exposures, and higher resolution, thus speeding up the machine learning process further. Our fully quantum pattern recognition system with quantum algorithm and quantum inputs promises a much-improved image acquisition and identification system with potential applications extending beyond face recognition, e.g., in medical imaging for diagnosing sensitive tissues or biology for protein identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岳岳岳发布了新的文献求助10
2秒前
研友_n0kjPL完成签到,获得积分0
3秒前
3秒前
3秒前
Dai关注了科研通微信公众号
3秒前
英勇的飞扬完成签到,获得积分10
4秒前
4秒前
无花果应助延胡索采纳,获得10
4秒前
上官若男应助WW采纳,获得10
4秒前
斯文败类应助露西亚采纳,获得10
4秒前
幽默天真发布了新的文献求助100
4秒前
4秒前
平安喜乐完成签到 ,获得积分10
5秒前
6秒前
小二郎应助蓝海采纳,获得10
6秒前
6秒前
Jasper应助youngcy采纳,获得10
7秒前
7秒前
员艳宁发布了新的文献求助30
9秒前
xu完成签到,获得积分20
9秒前
默默发布了新的文献求助10
10秒前
10秒前
踏雪完成签到 ,获得积分10
10秒前
hhhhhhhh完成签到,获得积分20
12秒前
12秒前
hdzhaung发布了新的文献求助10
13秒前
14秒前
苹果完成签到,获得积分10
14秒前
我要发nature完成签到,获得积分20
15秒前
15秒前
16秒前
yang完成签到 ,获得积分10
17秒前
John发布了新的文献求助10
18秒前
辛苦科研人完成签到 ,获得积分10
18秒前
20秒前
awwww发布了新的文献求助10
20秒前
苹果发布了新的文献求助10
20秒前
生椰拿铁发布了新的文献求助10
20秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4916187
求助须知:如何正确求助?哪些是违规求助? 4189726
关于积分的说明 13012119
捐赠科研通 3959063
什么是DOI,文献DOI怎么找? 2170518
邀请新用户注册赠送积分活动 1188698
关于科研通互助平台的介绍 1096671