Proteomics-Enabled Deep Learning Machine Algorithms Can Enhance Prediction of Mortality

医学 弗雷明翰风险评分 逻辑回归 机器学习 队列 内科学 比例危险模型 队列研究 弗雷明翰心脏研究 计算机科学 人工智能 算法 疾病
作者
Matthias Unterhuber,Karl‐Patrik Kresoja,Karl‐Philipp Rommel,Christian Besler,Andrea Baragetti,Nora Klöting,Uta Ceglarek,Matthias Blüher,Markus Scholz,Alberico L. Catapano,Hölger Thiele,Philipp Lurz
出处
期刊:Journal of the American College of Cardiology [Elsevier BV]
卷期号:78 (16): 1621-1631 被引量:47
标识
DOI:10.1016/j.jacc.2021.08.018
摘要

Individualized risk prediction represents a prerequisite for providing personalized medicine.This study compared proteomics-enabled machine-learning (ML) algorithms with classical and clinical risk prediction methods for all-cause mortality in cohorts of patients with cardiovascular risk factors in the LIFE-Heart Study, followed by validation in the PLIC (Progressione della Lesione Intimale Carotidea) study.Using the OLINK-Cardiovascular-II panel, 92 proteins were measured in a cohort of 1,998 individuals from the LIFE-Heart Study (derivation) and 772 subjects from the PLIC cohort (external validation). We constructed protein-based mortality prediction models using eXtreme Gradient Boosting (XGBoost) and a neural network, comparing the prediction performance with classical clinical risk scores (Systemic Coronary Risk Evaluation, Framingham), logistic and Cox regression models.All-cause mortality occurred in 156 (8%) patients in the internal validation and 68 (9%) patients in the external validation cohort, within a median follow-up of 10 and 11 years, respectively. On internal and external validation, the Framingham Risk Score achieved areas under the curve (AUCs) of 0.64 (95% CI: 0.59-0.68) and 0.65 (95% CI: 0.58-0.74), logistic regression AUCs of 0.65 (95% CI: 0.57-0.73) and 0.67 (95% CI: 0.59-0.74), Cox regression AUCs of 0.55 (95% CI: 0.51-0.59) and 0.65 (95% CI: 0.57-0.73), the XGBoost classifier AUCs of 0.83 (95% CI: 0.79-0.87) and 0.91 (95% CI: 0.86-0.95), the XGBoost survival estimator AUCs of 0.83 (95% CI: 0.79-0.87) and 0.93 (95% CI: 0.88-0.97), and the neural network AUCs of 0.87 (95% CI: 0.83-0.91) and 0.94 (95% CI: 0.90-0.98), respectively (modern vs classical ML: P < 0.001).ML-driven multiprotein risk models outperform classical regression models and clinical scores for prediction of all-cause mortality in patients at increased cardiovascular risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小陈完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
大模型应助guo采纳,获得10
2秒前
2秒前
2秒前
逃跑的想表白的你猜完成签到,获得积分10
3秒前
LLLKAIXINGUO完成签到,获得积分10
3秒前
珊明治完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
pluto应助wuhu采纳,获得10
4秒前
Xinxxx应助Legendary采纳,获得10
4秒前
丸子发布了新的文献求助10
5秒前
李健的粉丝团团长应助KQ采纳,获得10
5秒前
王欣发布了新的文献求助10
6秒前
ooo完成签到 ,获得积分10
6秒前
赵zhao发布了新的文献求助10
6秒前
6秒前
HHZ完成签到,获得积分10
7秒前
又发了NSC发布了新的文献求助10
7秒前
天天快乐应助zewangguo采纳,获得10
7秒前
8秒前
上官若男应助鲁卓林采纳,获得10
8秒前
8秒前
9秒前
9秒前
吴念发布了新的文献求助10
9秒前
张桂钊发布了新的文献求助10
9秒前
9秒前
10秒前
Yuan88发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239544
求助须知:如何正确求助?哪些是违规求助? 4406884
关于积分的说明 13716149
捐赠科研通 4275294
什么是DOI,文献DOI怎么找? 2345993
邀请新用户注册赠送积分活动 1343106
关于科研通互助平台的介绍 1301135