An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci

全基因组关联研究 生物 遗传学 计算生物学 基因组学 数量性状位点 遗传关联 表达数量性状基因座 单核苷酸多态性 基因 基因组 基因型
作者
Edward Mountjoy,Ellen M. Schmidt,Miguel Carmona,Jeremy Schwartzentruber,Gareth Peat,Alfredo Miranda,Luca Fumis,James Hayhurst,Annalisa Buniello,Mohd Anisul Karim,Daniel J. Wright,Andrew Hercules,Eliseo Papa,Eric B. Fauman,Jeffrey C. Barrett,John A. Todd,David Ochoa,Ian Dunham,Maya Ghoussaini
出处
期刊:Nature Genetics [Springer Nature]
卷期号:53 (11): 1527-1533 被引量:378
标识
DOI:10.1038/s41588-021-00945-5
摘要

Genome-wide association studies (GWASs) have identified many variants associated with complex traits, but identifying the causal gene(s) is a major challenge. In the present study, we present an open resource that provides systematic fine mapping and gene prioritization across 133,441 published human GWAS loci. We integrate genetics (GWAS Catalog and UK Biobank) with transcriptomic, proteomic and epigenomic data, including systematic disease–disease and disease–molecular trait colocalization results across 92 cell types and tissues. We identify 729 loci fine mapped to a single-coding causal variant and colocalized with a single gene. We trained a machine-learning model using the fine-mapped genetics and functional genomics data and 445 gold-standard curated GWAS loci to distinguish causal genes from neighboring genes, outperforming a naive distance-based model. Our prioritized genes were enriched for known approved drug targets (odds ratio = 8.1, 95% confidence interval = 5.7, 11.5). These results are publicly available through a web portal ( http://genetics.opentargets.org ), enabling users to easily prioritize genes at disease-associated loci and assess their potential as drug targets. Open Targets Genetics is a community resource that provides systematic fine mapping at human GWAS loci, enabling users to prioritize genes at disease-associated regions and assess their potential as drug targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eileen完成签到,获得积分10
刚刚
李健应助scl123采纳,获得10
刚刚
1565532470完成签到,获得积分10
刚刚
健壮不斜完成签到 ,获得积分10
1秒前
坦率绮山完成签到 ,获得积分10
1秒前
兰格格完成签到,获得积分10
1秒前
任我行完成签到,获得积分10
1秒前
小蘑菇应助如果我沉默采纳,获得10
1秒前
Gao_Z_X完成签到 ,获得积分10
1秒前
想个名字发布了新的文献求助30
1秒前
柴胡完成签到,获得积分10
1秒前
强强强强完成签到,获得积分10
1秒前
1秒前
Zo发布了新的文献求助10
2秒前
卡里的乏味完成签到,获得积分10
3秒前
小陈完成签到,获得积分10
4秒前
星辰大海应助南风喜欢采纳,获得10
5秒前
科研通AI2S应助bing采纳,获得10
6秒前
科研通AI2S应助bing采纳,获得10
6秒前
6秒前
new_vision完成签到,获得积分10
6秒前
园艺小学生完成签到,获得积分10
6秒前
李爱国应助forg采纳,获得10
7秒前
Sissi完成签到,获得积分10
8秒前
aibiotech完成签到,获得积分10
8秒前
8秒前
xng完成签到,获得积分10
9秒前
9秒前
Seven完成签到,获得积分10
10秒前
邵初蓝完成签到,获得积分10
10秒前
10秒前
淡然寒蕾完成签到,获得积分10
10秒前
迷路凌柏完成签到 ,获得积分10
10秒前
yydsyk完成签到,获得积分10
11秒前
科研通AI5应助如果我沉默采纳,获得10
11秒前
樊孟完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
难过的小甜瓜完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556082
求助须知:如何正确求助?哪些是违规求助? 3131635
关于积分的说明 9392313
捐赠科研通 2831483
什么是DOI,文献DOI怎么找? 1556442
邀请新用户注册赠送积分活动 726605
科研通“疑难数据库(出版商)”最低求助积分说明 715912