Subspace Network with Shared Representation learning for intelligent fault diagnosis of machine under speed transient conditions with few samples

过度拟合 特征学习 计算机科学 人工智能 子空间拓扑 鉴别器 自编码 判别式 断层(地质) 机器学习 模式识别(心理学) 代表(政治) 深度学习 人工神经网络 电信 政治 探测器 地质学 地震学 法学 政治学
作者
Shen Liu,Jinglong Chen,Shuilong He,Zhen Shi,Zitong Zhou
出处
期刊:Isa Transactions [Elsevier BV]
卷期号:128: 531-544 被引量:85
标识
DOI:10.1016/j.isatra.2021.10.025
摘要

Abstract Sharp speed variation leads to a shift of sample distribution domain, which poses a challenge for vibration-based rolling bearing fault diagnosis. Furthermore, the overfitting effects inflicted on the intelligent diagnosis model due to insufficient data will hinder the performance significantly. In this work, a Subspace Network with Shared Representation learning (SNSR) based on meta-learning is constructed for fault diagnosis under speed transient conditions with few samples. Firstly, shared representation learning based on the cross mutual information estimation is designed to promote the encoder to learn the domain invariant features. Meanwhile, we developed non-parameterized adaptive weight allocation to optimize the estimation of the discriminator. Then, the subspace classifiers in the meta-learning paradigm are employed to force the encoder to learn the discriminative features. Finally, the shared representation learning is embedded into the meta-learning and a cross co-training mechanism is designed for optimization. Thus the fusion framework is endowed with the capacity of learning distinguishable and domain invariant features simultaneously for diagnosis under speed transient conditions with few samples. Comparative experiments on two case studies of bearing fault diagnosis validated the superior performance of the proposed method, with an accuracy of 97.72% and 96.46% in 7-way and 9-way learning respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助sunnyxxq采纳,获得10
刚刚
刚刚
imzmy完成签到,获得积分10
2秒前
李爱国应助jummy采纳,获得10
4秒前
Freya完成签到 ,获得积分10
5秒前
6秒前
6秒前
wangxinji完成签到,获得积分10
6秒前
带虾的烧麦完成签到,获得积分10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得30
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
小明应助科研通管家采纳,获得20
9秒前
田様应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得30
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
笑点低小夏完成签到,获得积分10
10秒前
夕兮发布了新的文献求助20
12秒前
12秒前
小蜗牛完成签到 ,获得积分10
18秒前
jummy发布了新的文献求助10
18秒前
小二郎应助Maylling采纳,获得10
21秒前
22秒前
冰蓝完成签到 ,获得积分10
24秒前
24秒前
刘乐艺发布了新的文献求助10
24秒前
General完成签到 ,获得积分10
24秒前
JerryZ发布了新的文献求助10
25秒前
Inevitable发布了新的文献求助10
26秒前
亚男66完成签到,获得积分20
26秒前
28秒前
litpand发布了新的文献求助10
28秒前
ding应助左幻竹采纳,获得10
29秒前
didi完成签到,获得积分10
32秒前
32秒前
苹果完成签到,获得积分20
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4574269
求助须知:如何正确求助?哪些是违规求助? 3994309
关于积分的说明 12365141
捐赠科研通 3667553
什么是DOI,文献DOI怎么找? 2021284
邀请新用户注册赠送积分活动 1055423
科研通“疑难数据库(出版商)”最低求助积分说明 942833