Subspace Network with Shared Representation learning for intelligent fault diagnosis of machine under speed transient conditions with few samples

过度拟合 特征学习 计算机科学 人工智能 子空间拓扑 鉴别器 自编码 判别式 断层(地质) 机器学习 模式识别(心理学) 代表(政治) 深度学习 人工神经网络 电信 政治 探测器 地质学 地震学 法学 政治学
作者
Shen Liu,Jinglong Chen,Shuilong He,Zhen Shi,Zitong Zhou
出处
期刊:Isa Transactions [Elsevier]
卷期号:128: 531-544 被引量:80
标识
DOI:10.1016/j.isatra.2021.10.025
摘要

Abstract Sharp speed variation leads to a shift of sample distribution domain, which poses a challenge for vibration-based rolling bearing fault diagnosis. Furthermore, the overfitting effects inflicted on the intelligent diagnosis model due to insufficient data will hinder the performance significantly. In this work, a Subspace Network with Shared Representation learning (SNSR) based on meta-learning is constructed for fault diagnosis under speed transient conditions with few samples. Firstly, shared representation learning based on the cross mutual information estimation is designed to promote the encoder to learn the domain invariant features. Meanwhile, we developed non-parameterized adaptive weight allocation to optimize the estimation of the discriminator. Then, the subspace classifiers in the meta-learning paradigm are employed to force the encoder to learn the discriminative features. Finally, the shared representation learning is embedded into the meta-learning and a cross co-training mechanism is designed for optimization. Thus the fusion framework is endowed with the capacity of learning distinguishable and domain invariant features simultaneously for diagnosis under speed transient conditions with few samples. Comparative experiments on two case studies of bearing fault diagnosis validated the superior performance of the proposed method, with an accuracy of 97.72% and 96.46% in 7-way and 9-way learning respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助郑开司09采纳,获得10
刚刚
Jiangnj完成签到,获得积分10
刚刚
昵称发布了新的文献求助10
1秒前
含糊发布了新的文献求助10
1秒前
搜集达人应助8564523采纳,获得10
1秒前
无限的隶发布了新的文献求助10
1秒前
不安豁发布了新的文献求助10
1秒前
www发布了新的文献求助10
2秒前
2秒前
Crystal完成签到,获得积分10
3秒前
Laus发布了新的文献求助10
3秒前
orixero应助碱性沉默采纳,获得10
3秒前
今后应助仙子狗尾巴花采纳,获得10
3秒前
tylerconan完成签到 ,获得积分10
4秒前
4秒前
英俊的铭应助隐形的易巧采纳,获得10
5秒前
独特微笑发布了新的文献求助10
5秒前
学海无涯完成签到,获得积分10
5秒前
科研小民工应助机智苗采纳,获得30
5秒前
楼梯口无头女孩完成签到,获得积分10
8秒前
8秒前
Grayball应助gg采纳,获得10
8秒前
8秒前
456发布了新的文献求助10
8秒前
9秒前
凤凰山发布了新的文献求助10
9秒前
独特的绿蝶完成签到,获得积分10
9秒前
9秒前
清歌扶酒发布了新的文献求助10
9秒前
东风完成签到,获得积分10
10秒前
11秒前
呆萌幼晴完成签到,获得积分10
11秒前
qinqiny完成签到 ,获得积分10
12秒前
12秒前
周小慧完成签到,获得积分20
12秒前
轻松的人龙完成签到,获得积分20
12秒前
小蘑菇应助yxf采纳,获得10
12秒前
1199关注了科研通微信公众号
12秒前
星辰大海应助小赞芽采纳,获得10
12秒前
郑开司09发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762