Filter Bank Convolutional Neural Network for SSVEP Classification

计算机科学 卷积神经网络 模式识别(心理学) 人工智能 过滤器组 谐波 脑-机接口 分类器(UML) 脑电图 特征提取 语音识别 滤波器(信号处理) 计算机视觉 工程类 电气工程 精神科 电压 心理学
作者
Dechun Zhao,Tian Wang,Yuanyuan Tian,Xiaoming Jiang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 147129-147141 被引量:16
标识
DOI:10.1109/access.2021.3124238
摘要

Harmonics in electroencephalogram (EEG) caused by visual stimulation are the main basis of classification of steady-state visual evoked potential (SSVEP). However, the correlation of various harmonics, which could improve the classification performance especially when evoked EEG components are much weaker than spontaneous EEG components, has not been take into consideration in the design of classifier in previous studies. In this study, we proposed a filter bank convolutional neural network (FBCNN) method to optimize SSVEP classification. Three filters with passbands covering each harmonic of SSVEP signals are used to extract and separate the corresponding components, and the information from them are transformed into frequency domain. Subsequently, we introduce a novel convolutional neural network (CNN) architecture with three parallel CNN channels to extract and learn the harmonic features in passbands, and conclusions on the correlation among harmonics can finally be made by pair-add-up operations and dimension reductions to weigh the feature vectors. The proposed FBCNN is evaluated on two public datasets (Dataset1: 12-class, 10 subjects; Dataset2: 40-class, 35 subjects) to compare with other methods. The experimental results illustrate that FBCNN method improves the performance of CNN-based SSVEP classification methods and has a great potential to be applied in SSVEP-based BCI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
搜集达人应助王王采纳,获得10
2秒前
2秒前
DD47发布了新的文献求助30
4秒前
siusiuyin发布了新的文献求助10
5秒前
Daisy发布了新的文献求助20
5秒前
领导范儿应助九千七采纳,获得10
5秒前
6秒前
加鲁鲁完成签到 ,获得积分10
6秒前
ddd完成签到 ,获得积分10
6秒前
杳鸢应助芙芙采纳,获得50
6秒前
uuup2U完成签到,获得积分10
7秒前
wx发布了新的文献求助10
7秒前
8秒前
夜微醉完成签到,获得积分10
8秒前
怕黑的擎发布了新的文献求助10
8秒前
高高的蛟凤完成签到 ,获得积分10
9秒前
六一发布了新的文献求助10
9秒前
iuhgnor发布了新的文献求助10
9秒前
11秒前
健忘的谷冬完成签到,获得积分10
11秒前
寻星子完成签到,获得积分10
12秒前
12秒前
chen078发布了新的文献求助10
14秒前
14秒前
南烟发布了新的文献求助30
16秒前
zyx发布了新的文献求助10
16秒前
果味Vc完成签到 ,获得积分20
17秒前
鱼儿应助恐怖故事采纳,获得10
17秒前
17秒前
18秒前
Autumn完成签到,获得积分10
18秒前
DemonZ应助阿娟儿采纳,获得10
18秒前
library2025应助CC采纳,获得20
18秒前
34完成签到 ,获得积分10
19秒前
19秒前
上官若男应助Sunny采纳,获得10
20秒前
眼睛大的寄真完成签到,获得积分10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312815
求助须知:如何正确求助?哪些是违规求助? 2945259
关于积分的说明 8524020
捐赠科研通 2621043
什么是DOI,文献DOI怎么找? 1433283
科研通“疑难数据库(出版商)”最低求助积分说明 664924
邀请新用户注册赠送积分活动 650271