Filter Bank Convolutional Neural Network for SSVEP Classification

计算机科学 卷积神经网络 模式识别(心理学) 人工智能 过滤器组 谐波 脑-机接口 分类器(UML) 脑电图 特征提取 语音识别 滤波器(信号处理) 计算机视觉 工程类 电气工程 精神科 电压 心理学
作者
Dechun Zhao,Tian Wang,Yuanyuan Tian,Xiaoming Jiang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 147129-147141 被引量:16
标识
DOI:10.1109/access.2021.3124238
摘要

Harmonics in electroencephalogram (EEG) caused by visual stimulation are the main basis of classification of steady-state visual evoked potential (SSVEP). However, the correlation of various harmonics, which could improve the classification performance especially when evoked EEG components are much weaker than spontaneous EEG components, has not been take into consideration in the design of classifier in previous studies. In this study, we proposed a filter bank convolutional neural network (FBCNN) method to optimize SSVEP classification. Three filters with passbands covering each harmonic of SSVEP signals are used to extract and separate the corresponding components, and the information from them are transformed into frequency domain. Subsequently, we introduce a novel convolutional neural network (CNN) architecture with three parallel CNN channels to extract and learn the harmonic features in passbands, and conclusions on the correlation among harmonics can finally be made by pair-add-up operations and dimension reductions to weigh the feature vectors. The proposed FBCNN is evaluated on two public datasets (Dataset1: 12-class, 10 subjects; Dataset2: 40-class, 35 subjects) to compare with other methods. The experimental results illustrate that FBCNN method improves the performance of CNN-based SSVEP classification methods and has a great potential to be applied in SSVEP-based BCI.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大个应助丘奇采纳,获得10
1秒前
Ava应助食杂砸采纳,获得10
1秒前
moximoxi完成签到,获得积分10
1秒前
为什么不学习完成签到,获得积分10
2秒前
echo完成签到,获得积分10
2秒前
2秒前
啦啦啦完成签到,获得积分10
3秒前
科研通AI6应助F光采纳,获得10
3秒前
隐形曼青应助北瑾采纳,获得10
3秒前
上官若男应助风飞采纳,获得10
4秒前
xzn1123发布了新的文献求助100
4秒前
4秒前
xujingyi发布了新的文献求助10
4秒前
4秒前
顾我发布了新的文献求助20
4秒前
5秒前
裴承昊发布了新的文献求助10
5秒前
淡淡的白卉完成签到,获得积分20
5秒前
6秒前
安详立果完成签到,获得积分10
6秒前
superhero完成签到,获得积分10
6秒前
莫默完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
情怀应助重要无招采纳,获得10
7秒前
7秒前
7秒前
完美世界应助zx_p采纳,获得10
7秒前
7秒前
啦啦啦发布了新的文献求助10
8秒前
kirisaki发布了新的文献求助10
9秒前
黑翎完成签到 ,获得积分10
10秒前
10秒前
钻石好友完成签到,获得积分20
10秒前
隐形冬云发布了新的文献求助10
10秒前
10秒前
tianfx3发布了新的文献求助10
10秒前
磊磊磊发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647315
求助须知:如何正确求助?哪些是违规求助? 4773295
关于积分的说明 15038828
捐赠科研通 4806039
什么是DOI,文献DOI怎么找? 2570062
邀请新用户注册赠送积分活动 1526968
关于科研通互助平台的介绍 1486049