At-line quality assurance of deep-fried instant noodles using pilot scale visible-NIR spectroscopy combined with deep-learning algorithms

偏最小二乘回归 质量保证 数学 均方误差 算法 校准 水分 计算机科学 相关系数 人工智能 统计 化学 工程类 运营管理 有机化学 外部质量评估
作者
Rohit Upadhyay,Anshul Gupta,Hari Niwas Mishra,Shrinivasa N. Bhat
出处
期刊:Food Control [Elsevier]
卷期号:133: 108580-108580 被引量:8
标识
DOI:10.1016/j.foodcont.2021.108580
摘要

Deep-fried instant noodles produced in a pilot scale facility were monitored for quality parameters using at-line visible-NIR spectroscopy (380–1650 nm) combined with deep-learning algorithms. To build robust calibrations, a wider range of quality parameters for instant noodles viz., moisture (1.6–11.04%), crude protein (8.34–14.39%), total fat (12.38–26.68%), and total ash (1.18–3.15%) were selected. The original raw spectral data was subjected to different pretreatments (standard normal variate (SNV), detrending (DT), first derivative (FD), multiplicative scattering correction (MSC), among others) before being optimized for wavelength selection feature algorithm by competitive adaptive reweighed sampling (CARS). The calibration models were established using deep-learning algorithms based on conventional partial least squares regression (PLSR) and support vector machine regression (SVMR). In general, the SVMR modeling gave an optimum prediction statistics (pretreatment method, coefficient of determination (R2), root mean square error of prediction (RMSEP), ratio of prediction to deviation (RPD)) for moisture (CARS–SNV–DT, 0.98, 0.32, 6.7), crude protein (CARS–FD, 0.98, 0.18, 8.15), and total fat (CARS–MSC, 0.99, 0.39, 10.15) whereas partial least squares regression (PLSR) gave for total ash (CARS–raw, 0.94, 0.12, 4.34). In particularly for noodle manufacturers, the unification of visible-NIR spectroscopy and deep-learning algorithm is a promising to realize sustainability in quality assurance and control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助漂流采纳,获得30
刚刚
1秒前
syy发布了新的文献求助30
1秒前
all_right发布了新的文献求助10
1秒前
NexusExplorer应助难过忆山采纳,获得10
1秒前
CodeCraft应助strings采纳,获得10
3秒前
Jasper应助dududu采纳,获得10
3秒前
3秒前
雪白映天发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
7秒前
俭朴的跳跳糖完成签到 ,获得积分10
8秒前
CipherSage应助21采纳,获得10
8秒前
xxy发布了新的文献求助10
8秒前
bkagyin应助俭朴乐珍采纳,获得10
10秒前
啊嘀哩嘀哩完成签到,获得积分10
10秒前
科研通AI2S应助luoyn采纳,获得10
10秒前
master应助111采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
不配.应助科研通管家采纳,获得20
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
咖啡豆应助科研通管家采纳,获得20
13秒前
薛定谔的猫猫完成签到 ,获得积分10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
咖啡豆应助科研通管家采纳,获得20
13秒前
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
小马发布了新的文献求助10
13秒前
13秒前
小二郎应助悠悠采纳,获得10
14秒前
橘子完成签到,获得积分10
15秒前
17秒前
百里瓶窑发布了新的文献求助10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149204
求助须知:如何正确求助?哪些是违规求助? 2800294
关于积分的说明 7839427
捐赠科研通 2457845
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628436
版权声明 601706