Prediction of Ovarian Cancer-Related Metabolites Based on Graph Neural Network

卵巢癌 人工神经网络 计算机科学 医学 癌症 胶质瘤 癌症研究 肿瘤科
作者
Jingjing Chen,Yingying Chen,Kefeng Sun,Yu Wang,Hui He,Lin Sun,Sifu Ha,Xiaoxiao Li,Yifei Ou,Xue Zhang,Yanli Bi
出处
期刊:Frontiers in Cell and Developmental Biology [Frontiers Media]
卷期号:9: 753221-
标识
DOI:10.3389/fcell.2021.753221
摘要

Ovarian cancer is one of the three most malignant tumors of the female reproductive system. At present, researchers do not know its pathogenesis, which makes the treatment effect unsatisfactory. Metabolomics is closely related to drug efficacy, safety evaluation, mechanism of action, and rational drug use. Therefore, identifying ovarian cancer-related metabolites could greatly help researchers understand the pathogenesis and develop treatment plans. However, the measurement of metabolites is inaccurate and greatly affects the environment, and biological experiment is time-consuming and costly. Therefore, researchers tend to use computational methods to identify disease-related metabolites in large scale. Since the hypothesis that similar diseases are related to similar metabolites is widely accepted, in this paper, we built both disease similarity network and metabolite similarity network and used graph convolutional network (GCN) to encode these networks. Then, support vector machine (SVM) was used to identify whether a metabolite is related to ovarian cancer. The experiment results show that the AUC and AUPR of our method are 0.92 and 0.81, respectively. Finally, we proposed an effective method to prioritize ovarian cancer-related metabolites in large scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhiyan完成签到 ,获得积分10
1秒前
英姑应助xi采纳,获得10
1秒前
Jerry完成签到,获得积分10
3秒前
爱打工的帕鲁完成签到 ,获得积分10
3秒前
msl2023完成签到,获得积分10
3秒前
ran发布了新的文献求助10
4秒前
4秒前
目眩完成签到,获得积分10
4秒前
小二郎应助多多采纳,获得10
5秒前
柒柒球完成签到,获得积分10
7秒前
雨碎寒江完成签到,获得积分0
7秒前
鲤鱼鸽子完成签到,获得积分0
9秒前
Yoki完成签到,获得积分10
10秒前
tananna完成签到,获得积分10
11秒前
Jasper应助Jennifer采纳,获得10
11秒前
晴朗完成签到,获得积分10
11秒前
11秒前
L1完成签到 ,获得积分10
11秒前
大模型应助健壮寄真采纳,获得10
13秒前
ran完成签到,获得积分10
14秒前
duff完成签到 ,获得积分10
14秒前
执着千筹完成签到,获得积分10
14秒前
Gauss应助Jeffry采纳,获得30
15秒前
yyy发布了新的文献求助10
15秒前
强砸完成签到,获得积分10
16秒前
平头哥哥完成签到 ,获得积分10
17秒前
18秒前
19秒前
街道办事部完成签到,获得积分10
19秒前
19秒前
20秒前
心愿完成签到 ,获得积分10
21秒前
23秒前
23秒前
23秒前
XiaoYuanLabo完成签到,获得积分10
24秒前
烤番薯发布了新的文献求助10
24秒前
Jennifer发布了新的文献求助10
25秒前
老Mark完成签到,获得积分10
25秒前
高手发布了新的文献求助10
25秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3709324
求助须知:如何正确求助?哪些是违规求助? 3257397
关于积分的说明 9904726
捐赠科研通 2970266
什么是DOI,文献DOI怎么找? 1629147
邀请新用户注册赠送积分活动 772463
科研通“疑难数据库(出版商)”最低求助积分说明 743850