A Deep Q-Learning Based VNF Migration Strategy for Elastic Control in SDN/NFV Network

计算机科学 虚拟网络 连锁 分布式计算 节点(物理) 强化学习 网络虚拟化 网络服务 网络仿真 计算机网络 人工智能 虚拟化 云计算 工程类 心理学 结构工程 心理治疗师 操作系统
作者
Hongqiao Liu,Jia Chen,Jing Chen,Xin Cheng,Kuo Guo,Yajuan Qin
出处
期刊:2021 International Conference on Wireless Communications and Smart Grid (ICWCSG) 卷期号:: 217-223 被引量:5
标识
DOI:10.1109/icwcsg53609.2021.00049
摘要

Network functions virtualization (NFV) solves the problem of tight coupling between network functions and hardware. While the Service Function Chaining (SFC) is the basic business model and provides customized services for network functions in NFV. However, the existing network function deployment and migration mechanisms are relatively static and rigid. For example, problems such as network load imbalance, deployment nodes or virtual network function instances failing, and virtual function elastic scaling cannot be performed. Aiming at the above problems, this paper proposes the decision-making optimization algorithm for virtual network function migration based on deep reinforcement learning. The algorithm takes network and node resources as constraints, establishes a migration decision model including state space, behavior space, and reward mechanism, and realizes flexible adaptation of virtual network functions. In the algorithm, migration decision-making based on Deep Q Network (DQN) includes offline training and online decision-making. In the offline training stage, DQN is used to train the strategy network model. The online migration stage is based on the trained strategy network model, which uses the current network state as the model input to dynamically generate the migration strategy. Finally, the network performs the migration of virtual network functions online. This algorithm optimizes the node load and solves the problem of service interruption caused by the excessive load of a single node, failure of links, and virtual function instances in the network. Finally, we build a practical prototype system and demonstrate the performance of the proposed DQN approach. According to the network status, the prototype system realizes the on-demand dynamic migration of virtual network functions. And the experimental results verify that the proposed elastic adaptation mechanism can effectively solve the migration problems, improve the quality of service, and enhance the scalability and flexibility of the network.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
basaker发布了新的文献求助10
刚刚
Orange应助yf采纳,获得10
1秒前
1秒前
Fisher完成签到,获得积分10
1秒前
余生发布了新的文献求助10
1秒前
含蓄的悟空完成签到,获得积分10
1秒前
Ayyy关注了科研通微信公众号
1秒前
山居剑意发布了新的文献求助10
1秒前
1秒前
不安青牛应助花见月开采纳,获得10
2秒前
2秒前
2秒前
弹剑作歌完成签到,获得积分10
2秒前
赘婿应助jjjwln采纳,获得10
2秒前
要减肥的碧曼完成签到,获得积分10
3秒前
wanci应助Lllll采纳,获得10
4秒前
PaoPao发布了新的文献求助10
4秒前
屈绮兰发布了新的文献求助50
5秒前
研友_ZbM2qn发布了新的文献求助10
5秒前
lxt完成签到 ,获得积分10
6秒前
汉堡包应助zz采纳,获得10
6秒前
霸霸斌发布了新的文献求助10
6秒前
小二郎应助加了醋的豆浆采纳,获得10
6秒前
充电宝应助就好采纳,获得10
7秒前
Sue完成签到,获得积分20
7秒前
荼白发布了新的文献求助10
7秒前
顾志成发布了新的文献求助10
7秒前
海与星发布了新的文献求助10
7秒前
TangLin完成签到,获得积分10
9秒前
basaker完成签到,获得积分20
9秒前
任性的水风完成签到,获得积分10
10秒前
10秒前
11秒前
小马甲应助喜欢去公园采纳,获得30
11秒前
12秒前
Lllll发布了新的文献求助10
13秒前
PaoPao完成签到,获得积分10
13秒前
斯文败类应助无算浮白采纳,获得10
13秒前
13秒前
汉堡包应助繁星与北斗采纳,获得10
14秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3411077
求助须知:如何正确求助?哪些是违规求助? 3014545
关于积分的说明 8864373
捐赠科研通 2702074
什么是DOI,文献DOI怎么找? 1481422
科研通“疑难数据库(出版商)”最低求助积分说明 684839
邀请新用户注册赠送积分活动 679351