Prediction Accuracy of Dynamic Mode Decomposition

外推法 动态模态分解 估计员 数学 奇异值分解 应用数学 非线性系统 稳健性(进化) 算法 本征正交分解 计算机科学 交货地点 统计 基因 机器学习 物理 生物 量子力学 生物化学 化学 农学
作者
Hannah Lu,Daniel M. Tartakovsky
出处
期刊:SIAM Journal on Scientific Computing [Society for Industrial and Applied Mathematics]
卷期号:42 (3): A1639-A1662 被引量:42
标识
DOI:10.1137/19m1259948
摘要

Dynamic mode decomposition (DMD), which belongs to the family of singular-value decompositions (SVDs), is a popular tool of data-driven regression. While multiple numerical tests demonstrated the power and efficiency of DMD in representing data (i.e., in the interpolation mode), applications of DMD as a predictive tool (i.e., in the extrapolation mode) are scarce. This is due, in part, to the lack of rigorous error estimators for DMD-based predictions. We provide a theoretical error estimator for DMD extrapolation of numerical solutions to linear and nonlinear parabolic equations. This error analysis allows one to monitor and control the errors associated with DMD-based temporal extrapolation of numerical solutions to parabolic differential equations. We use several computational experiments to verify the robustness of our error estimators and to compare the predictive ability of DMD with that of proper orthogonal decomposition (POD), another member of the SVD family. Our analysis demonstrates the importance of a proper selection of observables, as predicted by the Koopman operator theory. In all the tests considered, DMD outperformed POD in terms of efficiency due to its iteration-free feature. In some of these experiments, POD proved to be more accurate than DMD. This suggests that DMD is preferable for obtaining a fast prediction with slightly lower accuracy, while POD should be used if the accuracy is paramount.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得30
刚刚
文艺紫菜应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得30
1秒前
wanci应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
1秒前
1秒前
zhonglv7应助科研通管家采纳,获得10
1秒前
Lemon完成签到 ,获得积分10
2秒前
所所应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
3秒前
987完成签到 ,获得积分10
3秒前
张12345发布了新的文献求助10
4秒前
橘子完成签到,获得积分10
4秒前
4秒前
4秒前
沈xx发布了新的文献求助10
5秒前
无花果应助车窗外采纳,获得10
6秒前
田様应助Mikey_Teng采纳,获得10
6秒前
橘子发布了新的文献求助10
6秒前
福路发布了新的文献求助10
7秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133034
求助须知:如何正确求助?哪些是违规求助? 4334358
关于积分的说明 13503569
捐赠科研通 4171281
什么是DOI,文献DOI怎么找? 2287061
邀请新用户注册赠送积分活动 1287947
关于科研通互助平台的介绍 1228783