The paper presents the electrochemical performance of supercapacitor with glass wool separator under organic electrolyte of tetraethylammonium tetrafluoroborate (TEABF4). The performance was evaluated using symmetrical two-electrode system and compared to an identical supercapacitor with commercially available cellulose paper separator under 1 M TEABF4. The application of glass wool separator reduces the bulk resistance of supercapacitor by 19.6%, promotes more efficient ions transfer across active surface of electrode and significantly improves specific capacitance by 19.1% compared to cellulose paper. The application of higher concentration TEABF4 (1.5 M) even improves the overall performance of glass wool-based supercapacitor by 32.2% reduction of bulk resistance and 61.9% increment in specific capacitance compared to 1 M TEABF4. In addition, the energy and power densities are significantly improved by 64% and 165%, respectively for the one with 1.5 M TEABF4. In general, the low-cost material glass wool material has great potential to replace commercially available cellulose paper as separator in developing much better supercapacitor.