K-SVD-based WVD enhancement algorithm for planetary gearbox fault diagnosis under a CNN framework

断层(地质) 计算机科学 卷积(计算机科学) 算法 卷积神经网络 奇异值分解 噪音(视频) 干扰(通信) 时频分析 振动 人工神经网络 混淆矩阵 模式识别(心理学) 人工智能 图像(数学) 声学 频道(广播) 计算机视觉 滤波器(信号处理) 物理 地质学 地震学 计算机网络
作者
Heng Li,Qing Zhang,Xianrong Qin,Yuan Sun
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:31 (2): 025003-025003 被引量:23
标识
DOI:10.1088/1361-6501/ab4488
摘要

This paper presents a new method of planetary gearbox fault diagnosis by dealing with and analyzing vibration signals. This study contributes to the realization of automatic diagnosis using a convolution neural network (CNN) to process time-frequency distributions (TFDs) transformed from vibration time series. In order to solve the problem of non-stationary working states and strong noise interference in industrial applications, a K-singular value decomposition (K-SVD) is used to enhance the resolution of TFDs obtained by Wigner–Ville distribution (WVD), a typical time-frequency transform algorithm. The simulation results indicate that K-SVD can not only reduce the effects of cross-terms on WVDs but can also eliminate noise, which makes the fault characteristics outstanding in the time-frequency domain. The enhanced WVDs improve the accuracy of fault diagnosis in a classification framework based on the CNN that can extract features adaptively and obtain a high degree of discrimination between different fault conditions. Finally, the effectiveness of the proposed method is verified by a prototype experiment with roller bearings and a scale test rig of a planetary gearbox from a ship unloader. Moreover, a priority confusion matrix is proposed as a visualization tool with which to evaluate the performance of a fault diagnosis model. The results open the possibility of extrapolating the method to the fault diagnosis of other mechanical parts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助第七个星球采纳,获得10
刚刚
刚刚
刚刚
slkjdz完成签到,获得积分10
刚刚
Angew来来来完成签到,获得积分10
刚刚
xiaxia完成签到,获得积分20
刚刚
雪七关注了科研通微信公众号
1秒前
Orange应助LSH慧采纳,获得10
1秒前
zz应助仁爱的野狼采纳,获得10
2秒前
深情安青应助仁爱的野狼采纳,获得10
2秒前
Hello应助仁爱的野狼采纳,获得10
2秒前
共享精神应助仁爱的野狼采纳,获得10
2秒前
Hello应助仁爱的野狼采纳,获得10
2秒前
wanci应助仁爱的野狼采纳,获得30
2秒前
wakeeeeeee完成签到,获得积分10
2秒前
任性枕头完成签到,获得积分10
2秒前
LisA__完成签到,获得积分10
3秒前
无极微光应助科克采纳,获得20
3秒前
Hello应助宁宁采纳,获得10
3秒前
CipherSage应助饱满从蕾采纳,获得10
3秒前
云1发布了新的文献求助10
3秒前
3秒前
5秒前
5秒前
barenlove完成签到,获得积分10
5秒前
5秒前
may完成签到,获得积分10
5秒前
yzy完成签到,获得积分20
6秒前
快乐嚓茶发布了新的文献求助10
6秒前
6秒前
格林完成签到,获得积分10
6秒前
共享精神应助DQ采纳,获得10
7秒前
ccc完成签到,获得积分20
7秒前
Akim应助呆萌贞采纳,获得10
7秒前
慕青应助披着羊皮的狼采纳,获得10
8秒前
科目三应助郝煜祺采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647530
求助须知:如何正确求助?哪些是违规求助? 4773705
关于积分的说明 15039847
捐赠科研通 4806303
什么是DOI,文献DOI怎么找? 2570208
邀请新用户注册赠送积分活动 1527046
关于科研通互助平台的介绍 1486132