Simultaneous Profiling of mRNA Transcriptome and DNA Methylome from a Single Cell

转录组 DNA甲基化 生物 计算生物学 表观遗传学 基因 DNA 遗传学 表观遗传学 基因表达
作者
Youjin Hu,Qin An,Ying Guo,Jiawei Zhong,Shuxin Fan,Pinhong Rao,Xialin Liu,Yizhi Liu,Guoping Fan
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 363-377 被引量:22
标识
DOI:10.1007/978-1-4939-9240-9_21
摘要

Single-cell transcriptome and single-cell methylome analysis have successfully revealed the heterogeneity in transcriptome and DNA methylome between single cells, and have become powerful tools to understand the dynamics of transcriptome and DNA methylome during the complicated biological processes, such as differentiation and carcinogenesis. Inspired by the success of using these single-cell -omics methods to understand the regulation of a particular “-ome,” more interests have been put on elucidating the regulatory relationship among multiple-omics at single-cell resolution. The simultaneous profiling of multiple-omics from the same single cell would provide us the ultimate power to understand the relationship among different “-omes,” but this idea is not materialized for decades due to difficulties to assay extremely tiny amount of DNA or RNA in a single cell. To address this technical challenge, we have recently developed a novel method named scMT-seq that can simultaneously profile both DNA methylome and RNA transcriptome from the same cell. This method enabled us to measure, from a single cell, the DNA methylation status of the most informative 0.5–1 million CpG sites and mRNA level of 10,000 genes, of which 3200 genes can be further analyzed with both promoter DNA methylation and RNA transcription. Using the scMT-seq data, we have successfully shown the regulatory relationship between DNA methylation and transcriptional level in a single dorsal root ganglion neuron (Hu et al., Genome Biol 17:88, 2016). We believe the scMT-seq would be a powerful technique to uncover the regulatory mechanism between transcription and DNA methylation, and would be of wide interest beyond the epigenetics community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东皇太一完成签到,获得积分10
刚刚
捕鱼小猫勇往直前完成签到,获得积分10
刚刚
栗子完成签到 ,获得积分10
刚刚
哇啦哇啦呼呼完成签到,获得积分10
刚刚
1秒前
计划明天炸地球完成签到,获得积分10
1秒前
专一的猎豹完成签到,获得积分10
1秒前
无名小卒每文完成签到,获得积分10
2秒前
专一的白萱完成签到 ,获得积分10
3秒前
3秒前
小杨发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
西灵壹完成签到,获得积分10
3秒前
花生发布了新的文献求助10
4秒前
木子木子粒完成签到 ,获得积分10
4秒前
4秒前
Akim应助平淡远山采纳,获得10
4秒前
zhen完成签到 ,获得积分20
4秒前
dique3hao完成签到 ,获得积分10
5秒前
RC_Wang完成签到,获得积分0
5秒前
Mao完成签到,获得积分20
5秒前
凭亿近人发布了新的文献求助10
6秒前
精明尔曼完成签到,获得积分10
6秒前
Avatar完成签到,获得积分10
6秒前
李世民发布了新的文献求助10
6秒前
机密塔完成签到,获得积分10
7秒前
8秒前
研友_VZG7GZ应助煎饼果子采纳,获得30
8秒前
William完成签到 ,获得积分10
9秒前
9秒前
Hou完成签到,获得积分10
9秒前
9秒前
fiell完成签到,获得积分10
9秒前
马登完成签到,获得积分10
10秒前
Mao发布了新的文献求助10
10秒前
Yangbingang给Yangbingang的求助进行了留言
10秒前
Holybot完成签到,获得积分10
11秒前
后知后觉完成签到,获得积分10
12秒前
skyrmion发布了新的文献求助10
12秒前
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009093
求助须知:如何正确求助?哪些是违规求助? 3548906
关于积分的说明 11300209
捐赠科研通 3283436
什么是DOI,文献DOI怎么找? 1810365
邀请新用户注册赠送积分活动 886129
科研通“疑难数据库(出版商)”最低求助积分说明 811259