Simultaneous Profiling of mRNA Transcriptome and DNA Methylome from a Single Cell

转录组 DNA甲基化 生物 计算生物学 表观遗传学 基因 DNA 遗传学 表观遗传学 基因表达
作者
Youjin Hu,Qin An,Ying Guo,Jiawei Zhong,Shuxin Fan,Pinhong Rao,Xialin Liu,Yizhi Liu,Guoping Fan
出处
期刊:Methods in molecular biology 卷期号:: 363-377 被引量:22
标识
DOI:10.1007/978-1-4939-9240-9_21
摘要

Single-cell transcriptome and single-cell methylome analysis have successfully revealed the heterogeneity in transcriptome and DNA methylome between single cells, and have become powerful tools to understand the dynamics of transcriptome and DNA methylome during the complicated biological processes, such as differentiation and carcinogenesis. Inspired by the success of using these single-cell -omics methods to understand the regulation of a particular “-ome,” more interests have been put on elucidating the regulatory relationship among multiple-omics at single-cell resolution. The simultaneous profiling of multiple-omics from the same single cell would provide us the ultimate power to understand the relationship among different “-omes,” but this idea is not materialized for decades due to difficulties to assay extremely tiny amount of DNA or RNA in a single cell. To address this technical challenge, we have recently developed a novel method named scMT-seq that can simultaneously profile both DNA methylome and RNA transcriptome from the same cell. This method enabled us to measure, from a single cell, the DNA methylation status of the most informative 0.5–1 million CpG sites and mRNA level of 10,000 genes, of which 3200 genes can be further analyzed with both promoter DNA methylation and RNA transcription. Using the scMT-seq data, we have successfully shown the regulatory relationship between DNA methylation and transcriptional level in a single dorsal root ganglion neuron (Hu et al., Genome Biol 17:88, 2016). We believe the scMT-seq would be a powerful technique to uncover the regulatory mechanism between transcription and DNA methylation, and would be of wide interest beyond the epigenetics community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助醉月舞阳采纳,获得10
1秒前
1秒前
月屿完成签到 ,获得积分10
1秒前
3秒前
zjy完成签到,获得积分10
3秒前
3秒前
酷波er应助艽野采纳,获得10
4秒前
小蘑菇应助棉花糖采纳,获得10
4秒前
kaya发布了新的文献求助30
4秒前
科研通AI2S应助禹晓兰采纳,获得10
4秒前
4秒前
文车完成签到,获得积分10
4秒前
Weining发布了新的文献求助10
5秒前
充电宝应助小迪采纳,获得10
6秒前
深情安青应助chelsey采纳,获得10
6秒前
欣喜的诗霜完成签到,获得积分20
6秒前
chdlin完成签到 ,获得积分10
7秒前
8秒前
lexy完成签到 ,获得积分10
8秒前
9秒前
9秒前
万能图书馆应助Robust采纳,获得10
10秒前
揍鱼完成签到,获得积分20
10秒前
23xyke完成签到,获得积分10
11秒前
十八完成签到,获得积分10
11秒前
豆豆完成签到,获得积分10
12秒前
柔弱小之发布了新的文献求助10
12秒前
和谐断天发布了新的文献求助10
12秒前
胖心怡完成签到,获得积分10
12秒前
CodeCraft应助猫猫侠采纳,获得10
13秒前
JamesPei应助勤奋的南子采纳,获得10
13秒前
呆萌的代灵完成签到,获得积分10
13秒前
优雅的猪完成签到,获得积分10
13秒前
浅尝离白应助大卫在分享采纳,获得30
14秒前
iriyan完成签到,获得积分10
14秒前
高兴冬灵发布了新的文献求助20
15秒前
饱满的尔云完成签到,获得积分10
15秒前
16秒前
充电宝应助lvsehx采纳,获得10
16秒前
该饮茶了完成签到,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144482
求助须知:如何正确求助?哪些是违规求助? 2796014
关于积分的说明 7817418
捐赠科研通 2452067
什么是DOI,文献DOI怎么找? 1304867
科研通“疑难数据库(出版商)”最低求助积分说明 627330
版权声明 601432