Output-feedback based robust controller for uncertain DC islanded microgrid

微电网 控制理论(社会学) 控制器(灌溉) 计算机科学 参数统计 线性矩阵不等式 李雅普诺夫函数 鲁棒控制 电压 控制工程 工程类 控制系统 控制(管理) 数学优化 数学 非线性系统 物理 电气工程 统计 人工智能 生物 量子力学 农学
作者
Muhammad Mehdi,Muhammad Saad,Saeed Zaman Jamali,Chul‐Hwan Kim
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE Publishing]
卷期号:42 (6): 1239-1251 被引量:17
标识
DOI:10.1177/0142331219884804
摘要

The integration of renewable energy resources to DC microgrid has captured the attention of the researchers in recent years. One of the active field of application of DC distribution is the islanded DC microgrid (DC ImG). The DC ImG present numerous challenges to researchers. Among many challenges, the regulation of voltage and stability of the system is indispensable to efficient operation. The voltage stability problem becomes more prominent when the system is exposed to disturbances and possess uncertainties in parameters. However, challenges can be overcome by skilful design of a robust controller for the system. Therefore, in this paper, an output-feedback based centralized robust control scheme is proposed. The proposed controller is designed to maintain good control performance in the presence of parametric uncertainties and exogenous disturbances. The uncertainties of the DC microgrid is modelled as a linear time-varying state-space system. The upper and the lower bounds of the time-varying parameters are determined by a Lebesque-measurable matrix. To attenuate the exogenous disturbances of the system [Formula: see text] based output-feedback controller is designed. The system stability is assured by the Lyapunov function candidate. The output-feedback controller needs only the voltage measurement; therefore, it requires less communication bandwidth as compared to the state-feedback. To obtain the controller parameters linear matrix inequality constraints are formulated and solved. The performance of the proposed controller is verified via simulations and compared with the existing schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shin0324发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
研友_VZG7GZ应助阿巴阿巴采纳,获得10
3秒前
朝晖夕阴完成签到,获得积分10
3秒前
蕾蕾发布了新的文献求助30
3秒前
wanci应助江屿采纳,获得10
3秒前
4秒前
酷炫的八宝粥完成签到,获得积分10
4秒前
4秒前
在水一方应助成环醚采纳,获得10
5秒前
斯文败类应助绝尘采纳,获得10
5秒前
iking666发布了新的文献求助10
5秒前
烟花应助114514采纳,获得10
5秒前
科研通AI5应助HJJHJH采纳,获得10
6秒前
6秒前
6秒前
tree发布了新的文献求助10
7秒前
宋百言发布了新的文献求助10
8秒前
liyi发布了新的文献求助10
8秒前
英俊的铭应助许起眸采纳,获得10
8秒前
梵高的向日葵完成签到,获得积分10
9秒前
英姑应助ll2925203采纳,获得10
10秒前
实验好难应助Passionfruit采纳,获得10
10秒前
标致博完成签到,获得积分10
11秒前
赘婿应助1+1采纳,获得10
11秒前
科研通AI5应助Jeffry采纳,获得30
12秒前
碰壁生灰完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
liyi完成签到,获得积分20
14秒前
14秒前
14秒前
15秒前
fusheng完成签到,获得积分10
15秒前
bluesky发布了新的文献求助10
16秒前
16秒前
16秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735423
求助须知:如何正确求助?哪些是违规求助? 3279372
关于积分的说明 10014345
捐赠科研通 2996002
什么是DOI,文献DOI怎么找? 1643782
邀请新用户注册赠送积分活动 781471
科研通“疑难数据库(出版商)”最低求助积分说明 749400