异质结
空位缺陷
偶极子
密度泛函理论
材料科学
化学物理
超短脉冲
过渡金属
原子单位
光电子学
化学
计算化学
结晶学
催化作用
物理
光学
有机化学
量子力学
生物化学
激光器
作者
Yongliang Shi,Oleg V. Prezhdo,Jin Zhao,Wissam A. Saidi
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2020-03-30
卷期号:5 (5): 1346-1354
被引量:66
标识
DOI:10.1021/acsenergylett.0c00485
摘要
It is crucial to optimize hole transport materials (HTMs) to improve the performance of metal halide perovskites solar cells. While atomically thin two-dimensional transition metal chalcogenides (TMDs) are promising HTM candidates because of their high charge mobility, the nature of the formed type I heterojunction hampers the transfer of photoexcited holes. We show that a small concentration of sulfur vacancies (SV) is already sufficient to stabilize iodine vacancies (IV) at the MAPbI3/MoS2 interface (SV-to-IV process), to induce an interface dipole moment, and to reverse the offset of the valence band maxima, thus leading to ultrafast hole transport from the absorber to the electrode. The 0.2–0.8 ps time scale computed from nonadiabatic density functional theory is in agreement with experiment. Our results prove that the "SV-to-IV" interface vacancy engineering plays the crucial role in improving the HTM performance of TMDs.
科研通智能强力驱动
Strongly Powered by AbleSci AI