Prediction models for cardiovascular disease risk in the hypertensive population: a systematic review

医学 梅德林 疾病 风险评估 人口 系统回顾 重症监护医学 内科学 心脏病学 环境卫生 政治学 计算机安全 计算机科学 法学
作者
Ruixue Cai,Xiaoli Wu,Chuanbao Li,Jianqian Chao
出处
期刊:Journal of Hypertension [Lippincott Williams & Wilkins]
卷期号:38 (9): 1632-1639 被引量:14
标识
DOI:10.1097/hjh.0000000000002442
摘要

The aim of this study was to identify, describe, and evaluate the available cardiovascular disease risk prediction models developed or validated in the hypertensive population.MEDLINE and the Web of Science were searched from database inception to March 2019, and all reference lists of included articles were reviewed.A total of 4766 references were screened, of which 18 articles were included in the review, presenting 17 prediction models specifically developed for hypertensive populations and 25 external validations. Among the 17 prediction models, most were constructed based on randomized trials in Europe or North America to predict the risk of fatal or nonfatal cardiovascular events. The most common predictors were classic cardiovascular risk factors such as age, diabetes, sex, smoking, and SBP. Of the 17 models, only one model was externally validated. Among the 25 external validations, C-statistics ranged from 0.58 to 0.83, 0.56 to 0.75, and 0.64 to 0.78 for models developed in the hypertensive population, the general population and other specific populations, respectively. Most of the development studies and validation studies had an overall high risk of bias according to PROBAST.There are a certain number of cardiovascular risk prediction models in patients with hypertension. The risk of bias assessment showed several shortcomings in the methodological quality and reporting in both the development and validation studies. Most models developed in the hypertensive population have not been externally validated. Compared with models developed for the general population and other specific populations, models developed for the hypertensive population do not display a better performance when validated among patients with hypertension. Research is needed to validate and improve the existing cardiovascular disease risk prediction models in hypertensive populations rather than developing completely new models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重菠萝完成签到,获得积分10
刚刚
山外山完成签到,获得积分10
刚刚
刚刚
yyyyy发布了新的文献求助10
刚刚
年轻的白梦完成签到 ,获得积分10
刚刚
Swin完成签到,获得积分10
1秒前
lalala完成签到,获得积分10
1秒前
2秒前
过过完成签到 ,获得积分10
2秒前
制冷剂完成签到 ,获得积分10
2秒前
3秒前
大模型应助小可采纳,获得10
3秒前
lucky完成签到,获得积分10
4秒前
勤奋的凌香完成签到,获得积分10
6秒前
6秒前
周杰完成签到,获得积分10
7秒前
7秒前
Akim应助雪流星采纳,获得10
7秒前
李健的小迷弟应助雪流星采纳,获得10
7秒前
Akim应助雪流星采纳,获得10
7秒前
酷波er应助雪流星采纳,获得10
7秒前
研友_VZG7GZ应助雪流星采纳,获得10
8秒前
思源应助雪流星采纳,获得10
8秒前
小蘑菇应助雪流星采纳,获得10
8秒前
小蘑菇应助雪流星采纳,获得10
8秒前
共享精神应助雪流星采纳,获得10
8秒前
小二郎应助雪流星采纳,获得10
8秒前
善学以致用应助大马猴采纳,获得10
8秒前
小蘑菇应助wergou采纳,获得10
8秒前
10秒前
10秒前
10秒前
ll完成签到,获得积分10
12秒前
猪猪hero应助诗尾采纳,获得10
12秒前
冲冲冲完成签到,获得积分10
12秒前
科研通AI5应助初夏采纳,获得10
12秒前
江知之完成签到 ,获得积分0
13秒前
WT发布了新的文献求助10
14秒前
Joshua完成签到,获得积分10
14秒前
香蕉觅云应助和尘同光采纳,获得10
14秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736925
求助须知:如何正确求助?哪些是违规求助? 3280839
关于积分的说明 10021396
捐赠科研通 2997494
什么是DOI,文献DOI怎么找? 1644637
邀请新用户注册赠送积分活动 782085
科研通“疑难数据库(出版商)”最低求助积分说明 749707