High-Resolution Chest X-Ray Bone Suppression Using Unpaired CT Structural Priors

先验概率 人工智能 医学影像学 计算机视觉 计算机科学 放射科 医学 贝叶斯概率
作者
Li Han,Hu Han,Zeju Li,Li Wang,Zhe Wu,Jingjing Lu,S. Kevin Zhou
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (10): 3053-3063 被引量:45
标识
DOI:10.1109/tmi.2020.2986242
摘要

There is clinical evidence that suppressing the bone structures in Chest X-rays (CXRs) improves diagnostic value, either for radiologists or computer-aided diagnosis. However, bone-free CXRs are not always accessible. We hereby propose a coarse-to-fine CXR bone suppression approach by using structural priors derived from unpaired computed tomography (CT) images. In the low-resolution stage, we use the digitally reconstructed radiograph (DRR) image that is computed from CT as a bridge to connect CT and CXR. We then perform CXR bone decomposition by leveraging the DRR bone decomposition model learned from unpaired CTs and domain adaptation between CXR and DRR. To further mitigate the domain differences between CXRs and DRRs and speed up the learning convergence, we perform all the aboved operations in Laplacian of Gaussian (LoG) domain. After obtaining the bone decomposition result in DRR, we upsample it to a high resolution, based on which the bone region in the original high-resolution CXR is cropped and processed to produce a high-resolution bone decomposition result. Finally, such a produced bone image is subtracted from the original high-resolution CXR to obtain the bone suppression result. We conduct experiments and clinical evaluations based on two benchmarking CXR databases to show that (i) the proposed method outperforms the state-of-the-art unsupervised CXR bone suppression approaches; (ii) the CXRs with bone suppression are instrumental to radiologists for reducing their false-negative rate of lung diseases from 15% to 8%; and (iii) state-of-the-art disease classification performances are achieved by learning a deep network that takes the original CXR and its bone-suppressed image as inputs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烂漫凡双完成签到,获得积分10
2秒前
一颗橙子完成签到,获得积分10
3秒前
Li完成签到,获得积分10
3秒前
3秒前
3秒前
万能图书馆应助vgh采纳,获得10
4秒前
万能图书馆应助俭朴仇血采纳,获得10
4秒前
Sucht完成签到,获得积分10
5秒前
buno应助ren采纳,获得10
6秒前
简.....完成签到,获得积分10
8秒前
白夜完成签到 ,获得积分10
8秒前
8秒前
lalala发布了新的文献求助10
9秒前
02完成签到,获得积分10
11秒前
Lrj雷雷发布了新的文献求助10
12秒前
Egoist完成签到,获得积分10
12秒前
领导范儿应助linjiebro采纳,获得10
12秒前
zz完成签到,获得积分10
13秒前
科研岗完成签到,获得积分10
13秒前
13秒前
13秒前
七七发布了新的文献求助10
13秒前
14秒前
隐形曼青应助浮生采纳,获得100
14秒前
完美世界应助科研通管家采纳,获得10
15秒前
15秒前
大模型应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
苹果丑应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
Ava应助科研通管家采纳,获得10
16秒前
vgh完成签到,获得积分10
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
所所应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
Candice应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
17秒前
17秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262821
求助须知:如何正确求助?哪些是违规求助? 2903462
关于积分的说明 8325396
捐赠科研通 2573481
什么是DOI,文献DOI怎么找? 1398328
科研通“疑难数据库(出版商)”最低求助积分说明 654136
邀请新用户注册赠送积分活动 632686