亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comprehensive network analysis of the molecular mechanisms associated with sorafenib resistance in hepatocellular carcinoma

索拉非尼 肝细胞癌 小桶 癌症研究 生物 抗药性 基因表达 基因表达谱 信使核糖核酸 基因调控网络 信号转导 基因 转录组 生物信息学 遗传学
作者
Haoming Lin,Rui Zhang,Wenrui Wu,Liming Lei
出处
期刊:Cancer genetics [Elsevier]
卷期号:245: 27-34 被引量:9
标识
DOI:10.1016/j.cancergen.2020.04.076
摘要

Objective Hepatocellular carcinoma (HCC) is an intractable disease because patients with HCC frequently develop sorafenib resistance after long-term chemotherapy. Although studies has demonstrated the availability of cumulative information on drug-resistant patients, little is known about the strategies and molecular mechanisms to reverse sorafenib resistance. Here, the present study identified critical mRNAs and transcription factors (TFs) associated with sorafenib resistance of HCC and evaluated the significance correlation between drug-resistant genes and TFs in comprehensive network for HCC xenografts mice. Methods The expression profiles of mRNAs were compared between sorafenib-acquired resistant tissue and sorafenib sensitive tissue utilizing RNA-Seq data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Gene Ontology and KEGG pathway analysis were performed to investigate the biological function of significantly dysregulated mRNA. Furthermore, the Kaplan-Meier survival analyses were performed to evaluate the effect of mRNA on over survival. Subsequently, TFs were predicted using TRANSFAC and TF-mRNA regulatory networks were visualized using cytoscape software. Results A total of 827 mRNAs were found to be differentially expressed in sorafenib-acquired resistant tissue compared with control. Thereafter, the results of functional enrichment analysis showed the dysregulated mRNAs involved in drug-resistant signaling pathway, including MAPK, JAK-STAT, TGF-β and drug-metabolism cytochrome P450 signaling pathway. CDK1, CDKN1A and TAPBP might serve as prognostic signature of resistance of HCC to sorafenib according to the survival analysis. Furthermore, TF-mRNA networks were constructed. There were 18 TFs were predicted to regulate differentially expressed mRNAs, which play an essential role in the regulation of dysfunctional gene networks. NFKB1 was presented in the TF-mRNA networks as the node with the highest degree and MYC was predicted as prognostic TF in drug resistance of HCC Conclusions Taken together, our findings showed that novel mRNAs and TFs, which served as critical biomarkers to predict survival and therapeutic targets of resistance to sorafenib in HCC. Furthermore, we constructed the TF-mRNA networks, which provides valuable theoretical references to further evaluate the molecular mechanisms of resistance to sorafenib in HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助zhouleiwang采纳,获得10
刚刚
川藏客完成签到 ,获得积分10
27秒前
帮帮我好吗完成签到,获得积分10
57秒前
研友_R2D2发布了新的文献求助10
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
3分钟前
桓某人发布了新的文献求助10
3分钟前
科研小白书hz完成签到 ,获得积分10
4分钟前
俏皮马里奥完成签到 ,获得积分10
5分钟前
5分钟前
桓某人发布了新的文献求助10
5分钟前
桓某人完成签到,获得积分10
6分钟前
Scrat完成签到,获得积分10
6分钟前
SciGPT应助秋刀鱼不过期采纳,获得10
6分钟前
Chris完成签到 ,获得积分0
6分钟前
小石榴爸爸完成签到 ,获得积分10
6分钟前
8R60d8应助科研通管家采纳,获得10
6分钟前
7分钟前
小石榴的爸爸完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
阿a发布了新的文献求助10
7分钟前
orixero应助小喽啰采纳,获得10
8分钟前
8分钟前
zhouleiwang发布了新的文献求助10
8分钟前
8分钟前
8R60d8应助科研通管家采纳,获得10
8分钟前
zhouleiwang完成签到,获得积分10
9分钟前
9分钟前
小喽啰发布了新的文献求助10
9分钟前
小喽啰完成签到,获得积分10
9分钟前
wanci应助mwang采纳,获得10
9分钟前
荣誉完成签到,获得积分10
9分钟前
taku完成签到 ,获得积分10
9分钟前
小马甲应助枯藤老柳树采纳,获得10
10分钟前
10分钟前
mwang发布了新的文献求助10
10分钟前
10分钟前
factor发布了新的文献求助10
10分钟前
10分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787981
关于积分的说明 7784214
捐赠科研通 2444073
什么是DOI,文献DOI怎么找? 1299719
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600997