硫酸化
硫酸酯酶
化学
碳水化合物
酶
生物化学
基质(水族馆)
荧光
高通量筛选
色谱法
生物
生态学
量子力学
物理
作者
Dominic P. Byrne,James A. London,Patrick A. Eyers,Edwin A. Yates,Alan Cartmell
摘要
Sulfated carbohydrate metabolism is a fundamental process, which occurs in all domains of life. Carbohydrate sulfatases are enzymes that remove sulfate groups from carbohydrates and are essential to the depolymerisation of complex polysaccharides. Despite their biological importance, carbohydrate sulfatases are poorly studied and challenges remain in accurately assessing the enzymatic activity, specificity and kinetic parameters. Most notably, the separation of desulfated products from sulfated substrates is currently a time-consuming process. In this paper, we describe the development of rapid capillary electrophoresis coupled to substrate fluorescence detection as a high-throughput and facile means of analysing carbohydrate sulfatase activity. The approach has utility for the determination of both kinetic and inhibition parameters and is based on existing microfluidic technology coupled to a new synthetic fluorescent 6S-GlcNAc carbohydrate substrate. Furthermore, we compare this technique, in terms of both time and resources, to high-performance anion exchange chromatography and NMR-based methods, which are the two current ‘gold standards’ for enzymatic carbohydrate sulfation analysis. Our study clearly demonstrates the advantages of mobility shift assays for the quantification of near real-time carbohydrate desulfation by purified sulfatases, and will support the search for small molecule inhibitors of these disease-associated enzymes.
科研通智能强力驱动
Strongly Powered by AbleSci AI