Automatic segmentation of three clinical target volumes in radiotherapy using lifelong learning

分割 计算机科学 学习迁移 遗忘 终身学习 深度学习 人工智能 任务(项目管理) 卷积神经网络 多任务学习 膨胀(度量空间) 适配器(计算) 模式识别(心理学) 机器学习 心理学 认知心理学 计算机硬件 数学 经济 组合数学 管理 教育学
作者
Kuo Men,Xinyuan Chen,Baiyu Yang,Ji Zhu,Junlin Yi,Shulian Wang,Yexiong Li,Jianrong Dai
出处
期刊:Radiotherapy and Oncology [Elsevier]
卷期号:157: 1-7 被引量:10
标识
DOI:10.1016/j.radonc.2020.12.034
摘要

Background and purpose Convolutional neural networks (CNNs) have comparable human level performance in automatic segmentation. An important challenge that CNNs face in segmentation is catastrophic forgetting. They lose performance on tasks that were previously learned when trained on task. In this study, we propose a lifelong learning method to learn multiple segmentation tasks continuously without forgetting previous tasks. Materials and methods The cohort included three tumors, 800 patients of which had nasopharyngeal cancer (NPC), 800 patients had breast cancer, and 800 patients had rectal cancer. The tasks included segmentation of the clinical target volume (CTV) of these three cancers. The proposed lifelong learning network adopted dilation adapter to learn three segmentation tasks one by one. Only the newly added dilation adapter (seven layers) was fine tuning for incoming new task, whereas all the other learned layers were frozen. Results Compared with single-task, multi-task or transfer learning, the proposed lifelong learning can achieve better or comparable segmentation accuracy with a DSC of 0.86 for NPC, 0.89 for breast cancer, and 0.87 for rectal cancer. Lifelong learning can avoid forgetting in sequential learning and yield good performance with less training data. Furthermore, it is more efficient than single-task or transfer learning, which reduced the number of parameters, size of model, and training time by ~58.8%, ~55.6%, and ~25.0%, respectively. Conclusion The proposed method preserved the knowledge of previous tasks while learning a new one using a dilation adapter. It could yield comparable performance with much less training data, model parameters, and training time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形盼海完成签到 ,获得积分10
刚刚
战神林北完成签到,获得积分10
刚刚
QIQ发布了新的文献求助10
1秒前
David发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
Bazinga发布了新的文献求助20
2秒前
充电宝应助晴天采纳,获得10
3秒前
3秒前
3秒前
尊敬寒松完成签到,获得积分10
3秒前
大个应助0gg采纳,获得10
3秒前
3秒前
dochx完成签到,获得积分10
3秒前
4秒前
99giddens应助科研通管家采纳,获得20
5秒前
英姑应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
微笑念薇发布了新的文献求助10
5秒前
烟花应助科研通管家采纳,获得30
5秒前
Henry应助科研通管家采纳,获得200
5秒前
Lemonade完成签到,获得积分10
5秒前
CodeCraft应助科研通管家采纳,获得30
5秒前
共享精神应助科研通管家采纳,获得30
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
科目三应助er采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
6秒前
不配.应助wzhang采纳,获得10
7秒前
QIQ完成签到,获得积分10
7秒前
初晴发布了新的文献求助10
7秒前
kakaC发布了新的文献求助10
8秒前
尊敬寒松发布了新的文献求助10
8秒前
sddq发布了新的文献求助10
8秒前
柿柿完成签到,获得积分20
9秒前
研友_VZG7GZ应助吴定洲采纳,获得10
9秒前
shimly0101xx完成签到,获得积分10
9秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148410
求助须知:如何正确求助?哪些是违规求助? 2799545
关于积分的说明 7835454
捐赠科研通 2456868
什么是DOI,文献DOI怎么找? 1307446
科研通“疑难数据库(出版商)”最低求助积分说明 628207
版权声明 601655