The number of multidrug-resistant bacterial strains is currently increasing; thus, the determination of drug targets for the development of novel antimicrobial drugs is urgently needed. FtsZ, the prokaryotic homolog of the eukaryotic tubulin, is a GTP-dependent prokaryotic cytoskeletal protein that is conserved among most bacterial strains. In vitro studies revealed that FtsZ self-assembles into dynamic protofilaments or bundles, and it forms a dynamic Z-ring at the center of the cell, leading to septation and consequent cell division. The potential role of FtsZ in the blockage of cell division makes FtsZ a highly attractive target for developing novel antibiotics. Researchers have been working on synthetic molecules and natural products as inhibitors of FtsZ. Accumulating data suggest that FtsZ may provide the platform for the development of novel antibiotics. In this review, we summarize recent advances on the properties of FtsZ protein and bacterial cell division, as well as on the development of FtsZ inhibitors.