One model to rule them all? Using machine learning algorithms to determine the number of factors in exploratory factor analysis.

探索性因素分析 算法 因子(编程语言) 计算机科学 人工智能 机器学习 结构方程建模 程序设计语言
作者
David Goretzko,Markus Bühner
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:25 (6): 776-786 被引量:41
标识
DOI:10.1037/met0000262
摘要

Determining the number of factors is one of the most crucial decisions a researcher has to face when conducting an exploratory factor analysis. As no common factor retention criterion can be seen as generally superior, a new approach is proposed-combining extensive data simulation with state-of-the-art machine learning algorithms. First, data was simulated under a broad range of realistic conditions and 3 algorithms were trained using specially designed features based on the correlation matrices of the simulated data sets. Subsequently, the new approach was compared with 4 common factor retention criteria with regard to its accuracy in determining the correct number of factors in a large-scale simulation experiment. Sample size, variables per factor, correlations between factors, primary and cross-loadings as well as the correct number of factors were varied to gain comprehensive knowledge of the efficiency of our new method. A gradient boosting model outperformed all other criteria, so in a second step, we improved this model by tuning several hyperparameters of the algorithm and using common retention criteria as additional features. This model reached an out-of-sample accuracy of 99.3% (the pretrained model can be obtained from https://osf.io/mvrau/). A great advantage of this approach is the possibility to continuously extend the data basis (e.g., using ordinal data) as well as the set of features to improve the predictive performance and to increase generalizability. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
rubyyyy完成签到,获得积分10
刚刚
upcdelx发布了新的文献求助70
1秒前
tuanhust应助淡淡的忆彤采纳,获得20
1秒前
乐观小之应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Jasper应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
Hello应助上岸上岸采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
小星星应助科研通管家采纳,获得10
3秒前
3秒前
今后应助科研通管家采纳,获得10
3秒前
MAKEYF发布了新的文献求助10
3秒前
乐观小之应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
桐桐应助小大夫采纳,获得10
4秒前
我是老大应助逗小妹采纳,获得10
4秒前
852应助谦让的振家采纳,获得30
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
caohai发布了新的文献求助10
4秒前
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
WhiteCaramel完成签到 ,获得积分10
4秒前
犯困发布了新的文献求助10
5秒前
5秒前
bea发布了新的文献求助10
5秒前
yunyunyun发布了新的文献求助10
5秒前
NexusExplorer应助刘球球采纳,获得10
6秒前
6秒前
rubyyyy发布了新的文献求助30
6秒前
子剑完成签到,获得积分10
6秒前
jkdzp发布了新的文献求助10
7秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956435
求助须知:如何正确求助?哪些是违规求助? 3502556
关于积分的说明 11108554
捐赠科研通 3233240
什么是DOI,文献DOI怎么找? 1787203
邀请新用户注册赠送积分活动 870528
科研通“疑难数据库(出版商)”最低求助积分说明 802105