One model to rule them all? Using machine learning algorithms to determine the number of factors in exploratory factor analysis.

探索性因素分析 算法 因子(编程语言) 计算机科学 人工智能 机器学习 结构方程建模 程序设计语言
作者
David Goretzko,Markus Bühner
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:25 (6): 776-786 被引量:41
标识
DOI:10.1037/met0000262
摘要

Determining the number of factors is one of the most crucial decisions a researcher has to face when conducting an exploratory factor analysis. As no common factor retention criterion can be seen as generally superior, a new approach is proposed-combining extensive data simulation with state-of-the-art machine learning algorithms. First, data was simulated under a broad range of realistic conditions and 3 algorithms were trained using specially designed features based on the correlation matrices of the simulated data sets. Subsequently, the new approach was compared with 4 common factor retention criteria with regard to its accuracy in determining the correct number of factors in a large-scale simulation experiment. Sample size, variables per factor, correlations between factors, primary and cross-loadings as well as the correct number of factors were varied to gain comprehensive knowledge of the efficiency of our new method. A gradient boosting model outperformed all other criteria, so in a second step, we improved this model by tuning several hyperparameters of the algorithm and using common retention criteria as additional features. This model reached an out-of-sample accuracy of 99.3% (the pretrained model can be obtained from https://osf.io/mvrau/). A great advantage of this approach is the possibility to continuously extend the data basis (e.g., using ordinal data) as well as the set of features to improve the predictive performance and to increase generalizability. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪聪完成签到,获得积分10
刚刚
1秒前
3秒前
focco完成签到,获得积分10
4秒前
科研通AI2S应助谭显芝采纳,获得10
4秒前
Ryan123完成签到,获得积分10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得30
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
一一应助科研通管家采纳,获得20
7秒前
7秒前
7秒前
毛毛发布了新的文献求助10
8秒前
8秒前
祥瑞发布了新的文献求助10
10秒前
啦啦完成签到 ,获得积分10
11秒前
fzzzzlucy发布了新的文献求助10
12秒前
deswin完成签到,获得积分10
13秒前
Ava应助小刘鸭鸭采纳,获得10
14秒前
王帅星完成签到,获得积分10
15秒前
拉屎不带纸完成签到,获得积分10
15秒前
认真做科研完成签到,获得积分10
15秒前
善学以致用应助fzzzzlucy采纳,获得10
16秒前
18秒前
shenren发布了新的文献求助20
18秒前
18秒前
七七四十九完成签到,获得积分10
18秒前
Diudu发布了新的文献求助10
19秒前
19秒前
萌神完成签到,获得积分10
19秒前
m彬m彬完成签到 ,获得积分10
20秒前
20秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1100
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3115811
求助须知:如何正确求助?哪些是违规求助? 2765921
关于积分的说明 7684699
捐赠科研通 2421256
什么是DOI,文献DOI怎么找? 1285489
科研通“疑难数据库(出版商)”最低求助积分说明 620071
版权声明 599799