One model to rule them all? Using machine learning algorithms to determine the number of factors in exploratory factor analysis.

探索性因素分析 算法 因子(编程语言) 计算机科学 人工智能 机器学习 结构方程建模 程序设计语言
作者
David Goretzko,Markus Bühner
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:25 (6): 776-786 被引量:41
标识
DOI:10.1037/met0000262
摘要

Determining the number of factors is one of the most crucial decisions a researcher has to face when conducting an exploratory factor analysis. As no common factor retention criterion can be seen as generally superior, a new approach is proposed-combining extensive data simulation with state-of-the-art machine learning algorithms. First, data was simulated under a broad range of realistic conditions and 3 algorithms were trained using specially designed features based on the correlation matrices of the simulated data sets. Subsequently, the new approach was compared with 4 common factor retention criteria with regard to its accuracy in determining the correct number of factors in a large-scale simulation experiment. Sample size, variables per factor, correlations between factors, primary and cross-loadings as well as the correct number of factors were varied to gain comprehensive knowledge of the efficiency of our new method. A gradient boosting model outperformed all other criteria, so in a second step, we improved this model by tuning several hyperparameters of the algorithm and using common retention criteria as additional features. This model reached an out-of-sample accuracy of 99.3% (the pretrained model can be obtained from https://osf.io/mvrau/). A great advantage of this approach is the possibility to continuously extend the data basis (e.g., using ordinal data) as well as the set of features to improve the predictive performance and to increase generalizability. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助yy123采纳,获得10
1秒前
yu完成签到,获得积分10
1秒前
大秦帝国完成签到,获得积分10
2秒前
杨凡华发布了新的文献求助10
2秒前
orixero应助wayhome采纳,获得10
3秒前
3秒前
斯文败类应助阳光向秋采纳,获得10
4秒前
4秒前
乐观啤酒应助微笑的弘文采纳,获得10
5秒前
pluto应助小锡采纳,获得10
5秒前
6秒前
妙bu可yan完成签到,获得积分10
7秒前
科研通AI5应助SCI采纳,获得10
7秒前
yujieshi发布了新的文献求助10
7秒前
天天快乐应助杨桃采纳,获得10
9秒前
JJy发布了新的文献求助30
9秒前
wade发布了新的文献求助10
10秒前
英俊的铭应助小仙女212采纳,获得10
10秒前
研友_LkKzoL完成签到,获得积分10
12秒前
路淼发布了新的文献求助10
12秒前
田様应助NXK采纳,获得10
13秒前
14秒前
14秒前
14秒前
14秒前
LY完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
wanci应助研友_LkKzoL采纳,获得10
15秒前
16秒前
wade完成签到,获得积分10
16秒前
17秒前
18秒前
Liu发布了新的文献求助10
19秒前
所所应助温婉的篮球采纳,获得10
19秒前
wwwyyy发布了新的文献求助10
19秒前
20秒前
彭于晏应助chenjyuu采纳,获得10
21秒前
SCI发布了新的文献求助10
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738248
求助须知:如何正确求助?哪些是违规求助? 3281724
关于积分的说明 10026477
捐赠科研通 2998622
什么是DOI,文献DOI怎么找? 1645291
邀请新用户注册赠送积分活动 782740
科研通“疑难数据库(出版商)”最低求助积分说明 749891