图像渐变
边缘检测
人工智能
计算机科学
Canny边缘检测器
形态梯度
阈值
计算机视觉
像素
GSM演进的增强数据速率
模式识别(心理学)
图像融合
不连续性分类
数字图像
图像处理
图像(数学)
数学
数学分析
作者
V. B. Surya Prasath,Dang N. H. Thanh,Nguyen Quoc Hung,Le Minh Hieu
出处
期刊:IEEE Access
[Institute of Electrical and Electronics Engineers]
日期:2020-01-01
卷期号:8: 141104-141110
被引量:9
标识
DOI:10.1109/access.2020.3013888
摘要
Image edge detection is an important task in image processing and pattern recognition. Edges in digital images signify image discontinuities and traditionally gradient information is utilized in finding possible edge pixels. In this work, we consider a fusion approach using multiscale gradient maps along with non-parametric Fisher information which is recently used in edge detection. By using multiscale gradient maps we obtain better edge localization and robust edge maps and local thresholding with Fisher information helps obtain better detection. Experimental results on a variety of digital images and performance evaluation undertaken in comparison with edge detectors from the literature show the advantage of the proposed approach.
科研通智能强力驱动
Strongly Powered by AbleSci AI