材料科学
钨
阴极
表面改性
化学工程
异质结
锂(药物)
热稳定性
复合材料
纳米技术
冶金
光电子学
化学
物理化学
内分泌学
工程类
医学
作者
Wenjin Li,Jian Zhang,Yunan Zhou,Wei Huang,Xianghuan Liu,Zhao Li,Min Gao,Zenghua Chang,Ning Li,Jiantao Wang,Shigang Lu,Xiaolong Li,Wen Wen,Daming Zhu,Yan Lü,Weidong Zhuang
标识
DOI:10.1021/acsami.0c12893
摘要
Nickel-rich layered oxides, as the most promising commercial cathode material for high-energy density lithium-ion batteries, experience significant surface structural instabilities that lead to severe capacity deterioration and poor thermal stability. To address these issues, radially aligned grains and surface LixNiyWzO-like heterostructures are designed and obtained with a simple tungsten modification strategy in the LiNi0.91Co0.045Mn0.045O2 cathode. The formation of radially aligned grains, manipulated by the WO3 modifier during synthesis, provides a fast Li+ diffusion channel during the charge/discharge process. Moreover, the tungsten tends to enter into the lattice of the primary particle surface, and the armor-type tungsten-rich heterostructure protects the bulk material from microcracks, structural transformations, and surface side reactions. First-principles calculations indicate that oxygen is more stable in the surface tungsten-rich heterostructure than elsewhere, thus triggering an improved surface structural stability. Consequently, the 2 wt % WO3-modified LiNi0.91Co0.045Mn0.045O2 (NCM@2W) material shows outstanding prolonged cycling performance (capacity retention of 80.85% after 500 cycles) and excellent rate performance (5 C, 188.4 mA h g–1). In addition, its layered-to-rock salt phase transition temperature is increased by 80 °C compared with that of the pristine cathode. This work provides a novel surface modification approach and an in-depth understanding of the overall performance enhancement of nickel-rich layered cathodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI