Visible-Infrared Image Fusion Based on Early Visual Information Processing Mechanisms

人工智能 计算机视觉 图像融合 计算机科学 图像处理 红外线的 视皮层 模式识别(心理学) 图像(数学) 光学 物理 生物 神经科学
作者
Min-Jie Tan,Shaobing Gao,Wenzheng Xu,Songchen Han
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:31 (11): 4357-4369 被引量:29
标识
DOI:10.1109/tcsvt.2020.3047935
摘要

In this work, we simulate the early visual information processing mechanisms in biological visual system (BVS) to solve the visible-infrared image fusion (VIIF) task. Concretely, both infrared and visible images are first processed with a dynamic receptive field (DRF), which is imitated by a Difference of Gaussian (DoG) function whose parameters are adjusted according to local image statistics (e.g., local edge responses). The DRF processing produces two components for each source image (e.g., the visible image or the infrared image) that respectively represent the results of On-center based DRF and Off-center based DRF. Then, the results of On-center based DRF for visible image are fused with the results of Off-center based DRF for infrared image and the results of On-center based DRF for infrared image are fused with the results of Off-center based DRF for visible image, according to the mechanisms of cortex-based center-surround fusion. Algorithmically, this step fuses the visible and infrared images processed by DRF with On-center and Off-center according to the different levels of local homogeneity. Moreover, a feedward signal acting as the sub-cortical flow is also introduced to adjust the results during the fusion. The final output image is simply obtained by the summation of two components after the cortex and sub-cortex based fusion. Qualitative and quantitative tests on four datasets demonstrate that our approach can fuse the infrared and visible images effectively with the good background details and discernible salient areas. We emphasize the importance of corticothalamic feedback, cortex and sub-cortex-based fusion, and the interactions between On-center pathway and Off-center pathway that are ubiquitous in BVS for producing the high-quality visual signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
煜钧发布了新的文献求助10
刚刚
Or1ll完成签到,获得积分10
1秒前
光亮西牛完成签到 ,获得积分10
1秒前
zxczxc完成签到,获得积分10
2秒前
不器完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
晓晓鹤完成签到,获得积分10
3秒前
fy12345完成签到,获得积分20
4秒前
4秒前
烟花应助郭倩采纳,获得10
5秒前
整齐白秋完成签到 ,获得积分10
5秒前
火柴two完成签到,获得积分10
5秒前
煜钧发布了新的文献求助30
5秒前
6秒前
大个应助化学兔八哥采纳,获得10
6秒前
xxx完成签到,获得积分10
6秒前
煜钧发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
promising关注了科研通微信公众号
6秒前
7秒前
7秒前
百里盼山发布了新的文献求助10
7秒前
不知月明是故乡完成签到 ,获得积分10
8秒前
我是老大应助标致秋尽采纳,获得10
9秒前
阿呸发布了新的文献求助10
9秒前
胖虎发布了新的文献求助10
9秒前
9秒前
西莫发布了新的文献求助10
12秒前
Yuki完成签到 ,获得积分10
12秒前
LFZ发布了新的文献求助10
13秒前
Fan完成签到 ,获得积分10
13秒前
14秒前
14秒前
Atong完成签到,获得积分10
14秒前
15秒前
忧伤的冰薇完成签到 ,获得积分10
15秒前
南桥枝完成签到 ,获得积分10
15秒前
王俊博完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652998
求助须知:如何正确求助?哪些是违规求助? 4789083
关于积分的说明 15062620
捐赠科研通 4811651
什么是DOI,文献DOI怎么找? 2574020
邀请新用户注册赠送积分活动 1529772
关于科研通互助平台的介绍 1488418