Effect of multi-temporal satellite images on soil moisture prediction using a digital soil mapping approach

土壤科学 土壤水分 土壤图 水分 土壤质地 归一化差异植被指数 空间变异性 Pedotransfer函数 水文学(农业) 卫星图像 克里金
作者
Solmaz Fathololoumi,Ali Reza Vaezi,Seyed Kazem Alavipanah,Ardavan Ghorbani,Daniel Saurette,Asim Biswas
出处
期刊:Geoderma [Elsevier]
卷期号:385: 114901- 被引量:1
标识
DOI:10.1016/j.geoderma.2020.114901
摘要

Abstract Soil moisture (SM), a critical component of the global hydrological cycle, is affected by individual or combinations of multiple factors including soil properties, climate, and topography. Despite its importance to many disciplines, predicting SM continuously, accurately, and inexpensively over a large area is a great challenge due to its dynamic nature controlled mostly by the spatial and temporal variability of these factors. Static environmental covariates, such as those derived from a digital elevation model, are commonly used in digital soil mapping (DSM); these are typically less suitable for predicting dynamic properties. Easily available multi-temporal satellite images show strong promise to capture this variability. The objective of this study was to predict SM from multi-temporal satellite images using a DSM approach. Specifically, we examined the feasibility of using dynamic, static, and combinations of environmental covariates (ECs) to predict SM in the Balikhli_Chay watershed in Iran on four separate dates in June, July, August, and September 2018 coincident with satellite overpass. Cubist and random forest (RF) machine learning algorithms (MLAs) were trained for making SM predictions for individual dates, and the data was then compiled without considering the date to create generalized models. The baseline for comparisons were the models developed using only static ECs. For June, July, August, and September, Cubist R2 improvements were 96%, 78%, 185% and 120%, respectively. Using the generalized models, R2 improved by as much as 223% and RMSE decreased by as much as 47% when comparing the best SM prediction model in each month to models developed using only static ECs for that same month using the Cubist model. Similar model improvements were seen for the RF model. The generalized Cubist and RF MLAs performed equally well with concordance of 0.91 and 0.90 for Cubist and RF respectively, and low RMSE of 3.04 and 2.98. The best Cubist and RF MLAs by month were always those developed with dynamic, or satellite-derived, ECs. Based on the variable importance statistics, land surface temperature (LST) was the most important EC. This study showed the strong predictions, and the practical feasibility of using multi-temporal satellite data as a dynamic EC that could help to capture the spatial and temporal variations of soil moisture. This approach could likely be extended to other dynamic soil property (e.g., soil temperature).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
舒适亦凝完成签到,获得积分10
刚刚
刚刚
Dave发布了新的文献求助10
1秒前
WonderHua应助朱朱采纳,获得10
1秒前
香蕉觅云应助朱朱采纳,获得10
1秒前
2秒前
CipherSage应助动听的笑南采纳,获得10
2秒前
司空发布了新的文献求助10
2秒前
木c完成签到,获得积分10
3秒前
深情安青应助bottle采纳,获得10
3秒前
NZH发布了新的文献求助10
3秒前
4秒前
5秒前
劲秉应助小木木壮采纳,获得10
5秒前
5秒前
。。。。发布了新的文献求助10
5秒前
赘婿应助过时的元风采纳,获得10
5秒前
1259671587发布了新的文献求助10
5秒前
暴躁的安阳关注了科研通微信公众号
5秒前
jiangmj1990发布了新的文献求助10
6秒前
劲秉应助lvbowen采纳,获得10
7秒前
脑洞疼应助顺利的雨灵采纳,获得10
8秒前
大山完成签到,获得积分10
8秒前
文献完成签到,获得积分20
8秒前
彭于晏应助啦啦啦~采纳,获得10
8秒前
玛利隆发布了新的文献求助30
9秒前
李健应助允怡采纳,获得10
9秒前
9秒前
白糖发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
别管我在发疯完成签到,获得积分10
10秒前
10秒前
ziwantcm发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
糊涂的凡发布了新的文献求助10
11秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481399
求助须知:如何正确求助?哪些是违规求助? 3071505
关于积分的说明 9122297
捐赠科研通 2763255
什么是DOI,文献DOI怎么找? 1516352
邀请新用户注册赠送积分活动 701541
科研通“疑难数据库(出版商)”最低求助积分说明 700339