Effect of multi-temporal satellite images on soil moisture prediction using a digital soil mapping approach

土壤科学 土壤水分 土壤图 水分 土壤质地 归一化差异植被指数 空间变异性 Pedotransfer函数 水文学(农业) 卫星图像 克里金
作者
Solmaz Fathololoumi,Ali Reza Vaezi,Seyed Kazem Alavipanah,Ardavan Ghorbani,Daniel Saurette,Asim Biswas
出处
期刊:Geoderma [Elsevier]
卷期号:385: 114901- 被引量:1
标识
DOI:10.1016/j.geoderma.2020.114901
摘要

Abstract Soil moisture (SM), a critical component of the global hydrological cycle, is affected by individual or combinations of multiple factors including soil properties, climate, and topography. Despite its importance to many disciplines, predicting SM continuously, accurately, and inexpensively over a large area is a great challenge due to its dynamic nature controlled mostly by the spatial and temporal variability of these factors. Static environmental covariates, such as those derived from a digital elevation model, are commonly used in digital soil mapping (DSM); these are typically less suitable for predicting dynamic properties. Easily available multi-temporal satellite images show strong promise to capture this variability. The objective of this study was to predict SM from multi-temporal satellite images using a DSM approach. Specifically, we examined the feasibility of using dynamic, static, and combinations of environmental covariates (ECs) to predict SM in the Balikhli_Chay watershed in Iran on four separate dates in June, July, August, and September 2018 coincident with satellite overpass. Cubist and random forest (RF) machine learning algorithms (MLAs) were trained for making SM predictions for individual dates, and the data was then compiled without considering the date to create generalized models. The baseline for comparisons were the models developed using only static ECs. For June, July, August, and September, Cubist R2 improvements were 96%, 78%, 185% and 120%, respectively. Using the generalized models, R2 improved by as much as 223% and RMSE decreased by as much as 47% when comparing the best SM prediction model in each month to models developed using only static ECs for that same month using the Cubist model. Similar model improvements were seen for the RF model. The generalized Cubist and RF MLAs performed equally well with concordance of 0.91 and 0.90 for Cubist and RF respectively, and low RMSE of 3.04 and 2.98. The best Cubist and RF MLAs by month were always those developed with dynamic, or satellite-derived, ECs. Based on the variable importance statistics, land surface temperature (LST) was the most important EC. This study showed the strong predictions, and the practical feasibility of using multi-temporal satellite data as a dynamic EC that could help to capture the spatial and temporal variations of soil moisture. This approach could likely be extended to other dynamic soil property (e.g., soil temperature).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
sougardenist完成签到,获得积分10
刚刚
子车雁开完成签到,获得积分10
1秒前
2秒前
yang完成签到 ,获得积分10
3秒前
青己完成签到 ,获得积分10
4秒前
深情安青应助Mae采纳,获得30
6秒前
7秒前
Cris发布了新的文献求助10
8秒前
9秒前
hem完成签到 ,获得积分10
10秒前
水若琳完成签到,获得积分0
11秒前
小送完成签到,获得积分10
11秒前
研友_nqa9Kn发布了新的文献求助10
11秒前
青岛彭于晏完成签到 ,获得积分10
12秒前
liwanr发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
搅碎一池星月完成签到,获得积分10
16秒前
16秒前
渔夫完成签到,获得积分20
16秒前
17秒前
17秒前
17秒前
hongxuezhi完成签到,获得积分10
18秒前
JamesPei应助感动书竹采纳,获得10
18秒前
渔夫发布了新的文献求助10
21秒前
lalala发布了新的文献求助10
21秒前
22秒前
22秒前
专注的芷发布了新的文献求助10
22秒前
crisp发布了新的文献求助10
25秒前
顾矜应助星星采纳,获得10
25秒前
小烦同学完成签到,获得积分10
26秒前
夏夜发布了新的文献求助10
26秒前
msw完成签到,获得积分20
26秒前
29秒前
科研通AI6应助渔夫采纳,获得10
30秒前
Metx完成签到 ,获得积分10
30秒前
liwanr完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499073
求助须知:如何正确求助?哪些是违规求助? 4596077
关于积分的说明 14452115
捐赠科研通 4529187
什么是DOI,文献DOI怎么找? 2481836
邀请新用户注册赠送积分活动 1465860
关于科研通互助平台的介绍 1438802