亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning–based Recurrence Prediction in Patients with Non–muscle-invasive Bladder Cancer

医学 膀胱癌 内科学 肿瘤科 癌症
作者
Marit Lucas,Ilaria Jansen,Ton G. van Leeuwen,Jorg R. Oddens,Daniël M. de Bruin,Henk A. Marquering
出处
期刊:European urology focus [Elsevier]
卷期号:8 (1): 165-172 被引量:55
标识
DOI:10.1016/j.euf.2020.12.008
摘要

Non-muscle-invasive bladder cancer (NMIBC) is characterized by frequent recurrence of the disease, which is difficult to predict.To combine digital histopathology slides with clinical data to predict 1- and 5-yr recurrence-free survival of NMIBC patients using deep learning.Data of patients undergoing a transurethral resection of a bladder tumor between 2000 and 2018 at a Dutch academic medical center were selected. Corresponding histological slides were digitized. A three-step approach was used to predict 1- and 5-yr recurrence-free survival. First, a segmentation network was used to detect the urothelium on the digital histopathology slides. Second, a selection network was trained for the selection of patches associated with recurrence. Third, a classification network, combining the information of the selection network with clinical data, was trained to give the probability of 1- and 5-yr recurrence-free survival.The accuracy of the deep learning-based model was compared with a multivariable logistic regression model using clinical data only.In the 1- and 5-yr follow-up cohorts, 359 and 281 patients were included with recurrence rates of 27% and 63%, respectively. The areas under the curve (AUCs) of the model combining digital histopathology slide data with clinical data were 0.62 and 0.76 for 1- and 5-yr recurrence predictions, respectively, which were higher than those of the model using digital histopathology slide data only (AUCs of 0.56 and 0.72, respectively) and the multivariable logistic regression (AUCs of 0.58 and 0.57, respectively).In our population, the deep learning-based model combining digital histopathology slides and clinical data enhances the prediction of recurrence (within 5 yr) compared with models using clinical data or image data only.By combining histopathology images and patient record data using deep learning, the prediction of recurrence in bladder cancer patients is enhanced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Edibletrio关注了科研通微信公众号
8秒前
book完成签到 ,获得积分10
9秒前
zwang688完成签到,获得积分10
16秒前
热情的c99发布了新的文献求助30
19秒前
22秒前
英俊的觅露完成签到,获得积分10
25秒前
25秒前
25秒前
27秒前
cowmoon发布了新的文献求助10
29秒前
明理瑾瑜发布了新的文献求助10
31秒前
小小的飞机完成签到,获得积分10
31秒前
王旭阳完成签到,获得积分10
34秒前
科研狗的春天完成签到 ,获得积分10
38秒前
酷波er应助明理瑾瑜采纳,获得10
40秒前
儒雅的十八完成签到,获得积分10
41秒前
44秒前
45秒前
明亮的老四完成签到 ,获得积分10
48秒前
李健的小迷弟应助Grinde采纳,获得10
58秒前
吃了吃了完成签到,获得积分10
1分钟前
TEMPO发布了新的文献求助10
1分钟前
NexusExplorer应助霸气乐菱采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得30
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
合一海盗完成签到,获得积分10
1分钟前
Worenxian完成签到 ,获得积分10
1分钟前
汉堡包应助老鼠耗子采纳,获得10
1分钟前
1分钟前
Yu完成签到 ,获得积分10
1分钟前
赞zan完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
嘟嘟嘟嘟发布了新的文献求助10
1分钟前
Grinde发布了新的文献求助10
1分钟前
1分钟前
老鼠耗子发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714334
求助须知:如何正确求助?哪些是违规求助? 5222944
关于积分的说明 15273149
捐赠科研通 4865786
什么是DOI,文献DOI怎么找? 2612363
邀请新用户注册赠送积分活动 1562482
关于科研通互助平台的介绍 1519740