Deep Learning–based Recurrence Prediction in Patients with Non–muscle-invasive Bladder Cancer

医学 膀胱癌 内科学 肿瘤科 癌症
作者
Marit Lucas,Ilaria Jansen,Ton G. van Leeuwen,Jorg R. Oddens,Daniël M. de Bruin,Henk A. Marquering
出处
期刊:European urology focus [Elsevier BV]
卷期号:8 (1): 165-172 被引量:46
标识
DOI:10.1016/j.euf.2020.12.008
摘要

Non-muscle-invasive bladder cancer (NMIBC) is characterized by frequent recurrence of the disease, which is difficult to predict.To combine digital histopathology slides with clinical data to predict 1- and 5-yr recurrence-free survival of NMIBC patients using deep learning.Data of patients undergoing a transurethral resection of a bladder tumor between 2000 and 2018 at a Dutch academic medical center were selected. Corresponding histological slides were digitized. A three-step approach was used to predict 1- and 5-yr recurrence-free survival. First, a segmentation network was used to detect the urothelium on the digital histopathology slides. Second, a selection network was trained for the selection of patches associated with recurrence. Third, a classification network, combining the information of the selection network with clinical data, was trained to give the probability of 1- and 5-yr recurrence-free survival.The accuracy of the deep learning-based model was compared with a multivariable logistic regression model using clinical data only.In the 1- and 5-yr follow-up cohorts, 359 and 281 patients were included with recurrence rates of 27% and 63%, respectively. The areas under the curve (AUCs) of the model combining digital histopathology slide data with clinical data were 0.62 and 0.76 for 1- and 5-yr recurrence predictions, respectively, which were higher than those of the model using digital histopathology slide data only (AUCs of 0.56 and 0.72, respectively) and the multivariable logistic regression (AUCs of 0.58 and 0.57, respectively).In our population, the deep learning-based model combining digital histopathology slides and clinical data enhances the prediction of recurrence (within 5 yr) compared with models using clinical data or image data only.By combining histopathology images and patient record data using deep learning, the prediction of recurrence in bladder cancer patients is enhanced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助shi采纳,获得10
1秒前
1秒前
1秒前
于大本事完成签到 ,获得积分10
3秒前
坚定岂愈发布了新的文献求助10
4秒前
PatrickWu发布了新的文献求助10
4秒前
7秒前
坚定岂愈完成签到,获得积分10
9秒前
英姑应助虚幻的不愁采纳,获得10
13秒前
13秒前
彭哒哒发布了新的文献求助10
19秒前
xx完成签到,获得积分10
21秒前
博士后完成签到 ,获得积分10
21秒前
小马甲应助山雀采纳,获得10
22秒前
懵懂的灭男完成签到,获得积分10
24秒前
25秒前
量子星尘发布了新的文献求助10
27秒前
30秒前
wang00wmd发布了新的文献求助20
30秒前
33秒前
tttttt完成签到,获得积分10
35秒前
谷捣猫宁完成签到,获得积分10
37秒前
在水一方应助鬼火采纳,获得10
38秒前
Mirandavia完成签到,获得积分10
39秒前
Pheonix1998完成签到,获得积分10
40秒前
42秒前
Miranda完成签到,获得积分10
43秒前
43秒前
罗中翠发布了新的文献求助10
45秒前
li完成签到 ,获得积分10
45秒前
48秒前
ZZ发布了新的文献求助10
48秒前
51秒前
按时毕业的小林完成签到,获得积分20
51秒前
Bio应助皮孤晴采纳,获得30
51秒前
滴滴哒完成签到,获得积分10
52秒前
wanci应助满眼星辰采纳,获得10
52秒前
Aoka发布了新的文献求助10
52秒前
57秒前
59秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979662
求助须知:如何正确求助?哪些是违规求助? 3523636
关于积分的说明 11218202
捐赠科研通 3261164
什么是DOI,文献DOI怎么找? 1800473
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167