Deep Learning–based Recurrence Prediction in Patients with Non–muscle-invasive Bladder Cancer

医学 膀胱癌 内科学 肿瘤科 癌症
作者
Marit Lucas,Ilaria Jansen,Ton G. van Leeuwen,Jorg R. Oddens,Daniël M. de Bruin,Henk A. Marquering
出处
期刊:European urology focus [Elsevier]
卷期号:8 (1): 165-172 被引量:30
标识
DOI:10.1016/j.euf.2020.12.008
摘要

Non-muscle-invasive bladder cancer (NMIBC) is characterized by frequent recurrence of the disease, which is difficult to predict.To combine digital histopathology slides with clinical data to predict 1- and 5-yr recurrence-free survival of NMIBC patients using deep learning.Data of patients undergoing a transurethral resection of a bladder tumor between 2000 and 2018 at a Dutch academic medical center were selected. Corresponding histological slides were digitized. A three-step approach was used to predict 1- and 5-yr recurrence-free survival. First, a segmentation network was used to detect the urothelium on the digital histopathology slides. Second, a selection network was trained for the selection of patches associated with recurrence. Third, a classification network, combining the information of the selection network with clinical data, was trained to give the probability of 1- and 5-yr recurrence-free survival.The accuracy of the deep learning-based model was compared with a multivariable logistic regression model using clinical data only.In the 1- and 5-yr follow-up cohorts, 359 and 281 patients were included with recurrence rates of 27% and 63%, respectively. The areas under the curve (AUCs) of the model combining digital histopathology slide data with clinical data were 0.62 and 0.76 for 1- and 5-yr recurrence predictions, respectively, which were higher than those of the model using digital histopathology slide data only (AUCs of 0.56 and 0.72, respectively) and the multivariable logistic regression (AUCs of 0.58 and 0.57, respectively).In our population, the deep learning-based model combining digital histopathology slides and clinical data enhances the prediction of recurrence (within 5 yr) compared with models using clinical data or image data only.By combining histopathology images and patient record data using deep learning, the prediction of recurrence in bladder cancer patients is enhanced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘子不是唯一的水果完成签到,获得积分20
1秒前
2秒前
2秒前
6秒前
楠木南完成签到,获得积分10
6秒前
棕熊熊发布了新的文献求助10
7秒前
li完成签到,获得积分10
7秒前
拼搏绿柏完成签到,获得积分10
8秒前
云出发布了新的文献求助10
9秒前
喜悦寒凝完成签到,获得积分10
13秒前
miemie发布了新的文献求助10
16秒前
17完成签到,获得积分10
16秒前
Unlung完成签到,获得积分10
20秒前
boom完成签到 ,获得积分10
20秒前
付创完成签到,获得积分10
23秒前
张津浩完成签到,获得积分10
25秒前
wking完成签到 ,获得积分10
26秒前
漂流的云朵完成签到,获得积分10
27秒前
无水乙醚完成签到,获得积分10
29秒前
yanjiusheng完成签到,获得积分10
30秒前
清爽的山水完成签到,获得积分10
31秒前
赧赧发布了新的文献求助10
31秒前
棕熊熊完成签到,获得积分20
37秒前
lyj完成签到 ,获得积分10
39秒前
43秒前
小鱼要变咸完成签到,获得积分10
45秒前
45秒前
Owen应助云出采纳,获得10
46秒前
熊大完成签到,获得积分10
49秒前
49秒前
共享精神应助科研通管家采纳,获得50
50秒前
在水一方应助科研通管家采纳,获得20
50秒前
50秒前
脑洞疼应助科研通管家采纳,获得10
50秒前
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
充电宝应助科研通管家采纳,获得10
50秒前
50秒前
搜集达人应助科研通管家采纳,获得10
51秒前
烟花应助科研通管家采纳,获得10
51秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1100
大理州人民医院2021上半年(卫生类)人员招聘试题及解析 1000
2023云南大理州事业单位招聘专业技术人员医疗岗162人笔试历年典型考题及考点剖析附带答案详解 1000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3114970
求助须知:如何正确求助?哪些是违规求助? 2765304
关于积分的说明 7681812
捐赠科研通 2420484
什么是DOI,文献DOI怎么找? 1285002
科研通“疑难数据库(出版商)”最低求助积分说明 619852
版权声明 599756