Efficient machine-learning based interatomic potentialsfor exploring thermal conductivity in two-dimensional materials

原子间势 热导率 分子动力学 统计物理学 材料科学 石墨烯 热的 从头算 格子(音乐) 密度泛函理论 热力学 计算化学 化学 物理 纳米技术 量子力学 声学
作者
Bohayra Mortazavi,Evgeny V. Podryabinkin,Ivan S. Novikov,Stephan Roche,Timon Rabczuk,Xiaoying Zhuang,Alexander V. Shapeev
出处
期刊:JPhys materials [IOP Publishing]
卷期号:3 (2): 02LT02-02LT02 被引量:62
标识
DOI:10.1088/2515-7639/ab7cbb
摘要

Abstract It is well-known that the calculation of thermal conductivity using classical molecular dynamics (MD) simulations strongly depends on the choice of the appropriate interatomic potentials. As proven for the case of graphene, while most of the available interatomic potentials estimate the structural and elastic constants with high accuracy, when employed to predict the lattice thermal conductivity they however lead to a variation of predictions by one order of magnitude. Here we present our results on using machine-learning interatomic potentials (MLIPs) passively fitted to computationally inexpensive ab-initio molecular dynamics trajectories without any tuning or optimizing of hyperparameters. These first-attempt potentials could reproduce the phononic properties of different two-dimensional (2D) materials obtained using density functional theory (DFT) simulations. To illustrate the efficiency of the trained MLIPs, we consider polyaniline C 3 N nanosheets. C 3 N monolayer was selected because the classical MD and different first-principles results contradict each other, resulting in a scientific dilemma. It is shown that the predicted thermal conductivity of 418 ± 20 W mK −1 for C 3 N monolayer by the non-equilibrium MD simulations on the basis of a first-attempt MLIP evidences an improved accuracy when compared with the commonly employed MD models. Moreover, MLIP-based prediction can be considered as a solution to the debated reports in the literature. This study highlights that passively fitted MLIPs can be effectively employed as versatile and efficient tools to obtain accurate estimations of thermal conductivities of complex materials using classical MD simulations. In response to remarkable growth of 2D materials family, the devised modeling methodology could play a fundamental role to predict the thermal conductivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
研友_Lmg01Z完成签到,获得积分20
3秒前
yomi完成签到 ,获得积分10
4秒前
hh发布了新的文献求助10
4秒前
秋qiu完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
月晔发布了新的文献求助10
6秒前
6秒前
7秒前
打打应助聪明的中心采纳,获得10
7秒前
慕青应助SPLjoker采纳,获得10
7秒前
7秒前
梁嘉琪完成签到,获得积分10
7秒前
Hosea完成签到 ,获得积分10
8秒前
健康的青槐完成签到,获得积分10
9秒前
科研通AI5应助徐小树采纳,获得10
9秒前
椰椰发布了新的文献求助10
10秒前
sonya完成签到,获得积分10
11秒前
11秒前
Lucas应助健康的青槐采纳,获得20
12秒前
manan发布了新的文献求助10
13秒前
why发布了新的文献求助10
13秒前
13秒前
难过以亦发布了新的文献求助10
14秒前
14秒前
爱与感谢完成签到 ,获得积分10
16秒前
西贝发布了新的文献求助10
16秒前
tuanheqi应助小芃采纳,获得50
17秒前
高点点完成签到 ,获得积分10
17秒前
晨时明月完成签到,获得积分10
18秒前
18秒前
摘下月亮发布了新的文献求助30
18秒前
Jasper应助Rui采纳,获得10
18秒前
SPLjoker发布了新的文献求助10
19秒前
19秒前
梅一一发布了新的文献求助10
21秒前
喜悦恶天发布了新的文献求助10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526093
求助须知:如何正确求助?哪些是违规求助? 3106509
关于积分的说明 9280568
捐赠科研通 2804080
什么是DOI,文献DOI怎么找? 1539235
邀请新用户注册赠送积分活动 716514
科研通“疑难数据库(出版商)”最低求助积分说明 709478