Mesoscale Anatomy of Dead Lithium Formation

锂(药物) 扩散 电解质 重量分析 电极 化学 剥离(纤维) 中尺度气象学 阳极 化学工程 材料科学 复合材料 热力学 地质学 物理 有机化学 物理化学 工程类 内分泌学 医学 气候学
作者
D. P. Tewari,Sobana Perumaram Rangarajan,Perla B. Balbuena,Yevgen Barsukov,Partha P. Mukherjee
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:124 (12): 6502-6511 被引量:40
标识
DOI:10.1021/acs.jpcc.9b11563
摘要

Lithium metal anodes are an attractive option for next-generation batteries because of high gravimetric and volumetric energy densities. The formation of dendritic morphology of electrodeposition during charging, however, poses safety concerns, which, in particular, have been a focus of intense research. The formation of "dead lithium" with successive cycling, on the other hand, has been relatively unexplored as the deterioration in performance is gradual. Dead lithium is the fragment of lithium that is detached from the lithium electrode during electrodissolution or stripping. In this study, the mesoscale underpinnings of dead lithium formation via a synergistic computational and experimental approach are presented. The mechanistic focus centers on the morphological evolution of the lithium electrode–electrolyte interface and the relative quantification of dead lithium formation under a range of operating temperatures and currents. This study reveals that the amount of dead lithium formed during stripping increases with decreasing current and increasing temperatures. This finding is in direct contrast to the operating conditions that lead to dendritic deposition during charging, i.e., at higher currents and lower temperatures. During stripping, more dead lithium is formed when the interface has thin narrow structures. The ionic diffusion and self-diffusion of lithium at the interface play a key role in the evolution of narrow structures at the interface. Therefore, more dead lithium is formed when diffusive processes are facilitated compared to the oxidative reaction at the interface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助科研通管家采纳,获得10
2秒前
HEIKU应助zhouxu采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
2秒前
嗯哼应助科研通管家采纳,获得20
2秒前
Singularity应助科研通管家采纳,获得20
2秒前
无花果应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
阿九应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
2秒前
Hello应助科研通管家采纳,获得10
2秒前
斯文败类应助woiwxx采纳,获得10
4秒前
Marcococ发布了新的文献求助100
5秒前
阿巴阿巴关注了科研通微信公众号
8秒前
思源应助霸气的惜寒采纳,获得10
8秒前
10秒前
13秒前
zho发布了新的文献求助10
13秒前
杳鸢应助清辉夜凝采纳,获得10
15秒前
16秒前
aaaaaamiaoa发布了新的文献求助30
17秒前
爆米花应助嘛呱采纳,获得10
17秒前
Ava应助zxpl6113666采纳,获得10
17秒前
浮浮沉沉发布了新的文献求助10
18秒前
廖骏完成签到,获得积分10
18秒前
20秒前
20秒前
猪皮恶人完成签到,获得积分10
20秒前
21秒前
HJJ应助南风不竞采纳,获得30
21秒前
期待着完成签到,获得积分10
21秒前
猪皮恶人发布了新的文献求助10
23秒前
Jessica完成签到,获得积分10
23秒前
doctorhuo完成签到 ,获得积分10
23秒前
25秒前
25秒前
25秒前
mirrovo完成签到 ,获得积分10
28秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260296
求助须知:如何正确求助?哪些是违规求助? 2901540
关于积分的说明 8315902
捐赠科研通 2571101
什么是DOI,文献DOI怎么找? 1396826
科研通“疑难数据库(出版商)”最低求助积分说明 653584
邀请新用户注册赠送积分活动 631997