An Effective Photoplethysmography Heart Rate Estimation Framework Integrating Two-Level Denoising Method and Heart Rate Tracking Algorithm Guided by Finite State Machine

光容积图 降噪 计算机科学 噪音(视频) 算法 跟踪(教育) 信号(编程语言) 信噪比(成像) 信号处理 人工智能 有限状态机
作者
Jingbin Guo,Xiang Chen,Jiaqi Zhao,Xu Zhang,Xun Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (8): 3731-3742
标识
DOI:10.1109/jbhi.2022.3165071
摘要

In order to achieve accurate heart rate (HR) estimation in complex scenes, this paper presents an effective photoplethysmography (PPG) HR estimation framework integrating two-level denoising method and HR tracking algorithm guided by finite state machine (FSM). Aiming at solving the problems of low signal-to-noise ratio and co-frequency (the noise frequency is close to the HR frequency) caused by motion artifacts, the two-level denoising method consisting of the cascaded adaptive filtering and the differential denoising guided by FSM are designed to remove motion-related noises in PPG signals. In order to solve the problem of HR tracking error caused by poor wrist contact, the HR tracking algorithm guided by FSM is proposed to obtain the global optimization capability. The results of HR estimation experiments conducted on the IEEE Signal Processing Cup database and the WeData database created by ourselves show that the proposed framework can effectively cope with the problems of low signal-to-noise ratio and co-frequency. Even if tracking errors occur due to poor wristband contact, the proposed HR tracking algorithm guided by FSM can correct them in time when the HR component appears again. The average absolute error of HR estimation on the two databases are 1.76 BPM (beats per minute) and 2.77 BPM, respectively, which is more accurate compared to other algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wewe发布了新的文献求助30
3秒前
昵称发布了新的文献求助10
3秒前
4秒前
hdd完成签到,获得积分10
4秒前
irisjlj发布了新的文献求助10
4秒前
有人应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
SCINEXUS应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
SCINEXUS应助科研通管家采纳,获得20
6秒前
子夜应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
sutharsons应助科研通管家采纳,获得30
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
6秒前
Owen应助科研通管家采纳,获得10
7秒前
SCINEXUS应助科研通管家采纳,获得20
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
科研通AI5应助heidi采纳,获得10
8秒前
浙江嘉兴发布了新的文献求助10
8秒前
11秒前
P4完成签到 ,获得积分10
12秒前
mimicyang发布了新的文献求助10
12秒前
12秒前
13秒前
搞怪白易发布了新的文献求助10
14秒前
浦肯野应助irisjlj采纳,获得10
15秒前
迟大猫应助通~采纳,获得10
17秒前
19秒前
20秒前
木槿花难开完成签到,获得积分10
21秒前
小巧念寒完成签到,获得积分10
24秒前
玉ER完成签到,获得积分10
26秒前
希望天下0贩的0应助wei采纳,获得10
26秒前
北枳完成签到 ,获得积分10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851