Multi-Objective Network Reconfiguration and Allocation of Capacitor Units in Radial Distribution System Using an Enhanced Artificial Bee Colony Optimization

数学优化 控制重构 分布式发电 最优化问题 电容器 进化算法 交流电源 计算机科学 节点(物理) 还原(数学) 可靠性(半导体) 电压 人工蜂群算法 工程类 可靠性工程 功率(物理) 数学 电气工程 可再生能源 嵌入式系统 物理 几何学 结构工程 量子力学
作者
Hossein Lotfi
出处
期刊:Electric Power Components and Systems [Taylor & Francis]
卷期号:49 (13-14): 1130-1142 被引量:22
标识
DOI:10.1080/15325008.2022.2049661
摘要

Distribution network reconfiguration (DNR) can be defined as an optimization problem in the power system that is done through changing the switching status to reduce loss and operating cost. Moreover, optimal capacitor allocation in the distribution network provides benefits such as loss reduction and improved voltage profile by reactive power compensation. Thus, this study provides a multi-objective framework for DNR and capacitor allocation problem in the presence of distributed generation (DG) sources. In the common DNR studies, the requirement of reliability is not usually fulfilled, usually loss and voltage deviation are often chosen as the objective functions. In this paper, the multi-objective problem is considered as a combination of energy not supplied (ENS) and emission produced by DG units and grid, moreover network loss is defined as the other objective function. The simultaneous presence of DG units and capacitors has made the problem more complicated, and there will be a demand for a precise approach to solve the multi-objective optimization problem. Hence, an enhanced artificial bee colony optimization (EABCO) method is proposed to tackle the complexity of the optimization problem. In order to shown the efficacy of the proposed approach, it is tested on a 33 and 86- node systems, the obtained results of EABCO method are compared with common evolutionary, hybrid and state-of–the-art algorithms. By implementing the proposed approach in two small-scale test systems, approximately 74% and 15% reduction in ENS are achieved compared to the initial value before distribution feeder reconfiguration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Nanpasen发布了新的文献求助10
2秒前
骆怀薇完成签到 ,获得积分10
3秒前
Wink14551发布了新的文献求助10
3秒前
hf发布了新的文献求助30
4秒前
zxvcbnm完成签到,获得积分10
4秒前
fanhuam发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
称心寒松发布了新的文献求助10
7秒前
NexusExplorer应助MHSCS采纳,获得10
7秒前
早上好完成签到,获得积分10
7秒前
阳光向秋发布了新的文献求助10
8秒前
9秒前
柠檬发布了新的文献求助10
11秒前
11秒前
慕青应助121采纳,获得10
11秒前
bbdx发布了新的文献求助10
13秒前
13秒前
15秒前
WYP完成签到 ,获得积分10
15秒前
云天明发布了新的文献求助10
15秒前
诚心的初露完成签到,获得积分10
17秒前
yyyt完成签到,获得积分10
17秒前
秤子发布了新的文献求助10
17秒前
wss关闭了wss文献求助
18秒前
脑洞疼应助叽叽卟卟采纳,获得10
18秒前
善学以致用应助Will采纳,获得10
21秒前
xiaofeiyan发布了新的文献求助10
21秒前
糖果应助wangmomo1983采纳,获得10
22秒前
彩色映雁发布了新的文献求助10
22秒前
大个应助牛牛的我采纳,获得10
24秒前
xixi完成签到,获得积分10
24秒前
zzzz发布了新的文献求助10
24秒前
zy完成签到,获得积分10
26秒前
hf完成签到,获得积分10
26秒前
27秒前
李白完成签到,获得积分10
28秒前
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427