Resource Allocation With Workload-Time Windows for Cloud-Based Software Services: A Deep Reinforcement Learning Approach

计算机科学 云计算 强化学习 资源配置 工作量 分布式计算 资源管理(计算) 服务质量 软件 人工智能 操作系统 计算机网络
作者
Xing Chen,Lijian Yang,Zheyi Chen,Geyong Min,Xianghan Zheng,Chunming Rong
出处
期刊:IEEE Transactions on Cloud Computing [Institute of Electrical and Electronics Engineers]
卷期号:11 (2): 1871-1885 被引量:29
标识
DOI:10.1109/tcc.2022.3169157
摘要

As the workloads and service requests in cloud computing environments change constantly, cloud-based software services need to adaptively allocate resources for ensuring the Quality-of-Service (QoS) while reducing resource costs. However, it is very challenging to achieve adaptive resource allocation for cloud-based software services with complex and variable system states. Most of the existing methods only consider the current condition of workloads, and thus cannot well adapt to real-world cloud environments subject to fluctuating workloads. To address this challenge, we propose a novel Deep Reinforcement learning based resource Allocation method with workload-time Windows (DRAW) for cloud-based software services that considers both the current and future workloads in the resource allocation process. Specifically, an original Deep Q-Network (DQN) based prediction model of management operations is trained based on workload-time windows, which can be used to predict appropriate management operations under different system states. Next, a new feedback-control mechanism is designed to construct the objective resource allocation plan under the current system state through iterative execution of management operations. Extensive simulation results demonstrate that the prediction accuracy of management operations generated by the proposed DRAW method can reach 90.69%. Moreover, the DRAW can achieve the optimal/near-optimal performance and outperform other classic methods by 3 $\sim$ 13% under different scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangh65完成签到,获得积分10
1秒前
1秒前
3秒前
Singularity应助畅快焦采纳,获得10
3秒前
3秒前
工藤新一发布了新的文献求助10
4秒前
非凡梦完成签到,获得积分10
4秒前
4秒前
5秒前
master发布了新的文献求助10
6秒前
7秒前
leiyang49应助卢敏的爸爸采纳,获得10
8秒前
薄雾密雨发布了新的文献求助10
8秒前
拼搏草莓发布了新的文献求助10
9秒前
9秒前
大个应助Janel采纳,获得10
10秒前
紧张的志泽完成签到 ,获得积分10
11秒前
hhh发布了新的文献求助10
12秒前
Candice应助Shibssjd采纳,获得10
12秒前
12秒前
英姑应助Peter_Zhu采纳,获得30
14秒前
16秒前
浮云发布了新的文献求助10
16秒前
好想被风刮走完成签到,获得积分10
18秒前
情怀应助dent强采纳,获得10
18秒前
19秒前
Hello应助科研通管家采纳,获得10
19秒前
田様应助科研通管家采纳,获得10
19秒前
20秒前
小马甲应助科研通管家采纳,获得10
20秒前
大个应助科研通管家采纳,获得10
20秒前
小二郎应助科研通管家采纳,获得10
20秒前
20秒前
滴滴吹螺丝号完成签到,获得积分10
20秒前
拼搏草莓完成签到,获得积分10
20秒前
21秒前
科目三应助李哈哈采纳,获得10
21秒前
墨染书香完成签到,获得积分10
21秒前
CodeCraft应助陆海的你采纳,获得10
21秒前
大力的熊猫完成签到,获得积分20
21秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387304
求助须知:如何正确求助?哪些是违规求助? 3000155
关于积分的说明 8789582
捐赠科研通 2685932
什么是DOI,文献DOI怎么找? 1471398
科研通“疑难数据库(出版商)”最低求助积分说明 680234
邀请新用户注册赠送积分活动 673020