Recent Advances in Unmanned Aerial Vehicles: A Review

无人机 背景(考古学) 领域(数学) 计算机科学 运动规划 系统工程 机器人 工程类 人工智能 数据科学 地理 数学 遗传学 生物 考古 纯数学
作者
Faiyaz Ahmed,J. C. Mohanta,Anupam Keshari,Pankaj Singh Yadav
出处
期刊:Arabian journal for science and engineering [Springer Nature]
卷期号:47 (7): 7963-7984 被引量:66
标识
DOI:10.1007/s13369-022-06738-0
摘要

In recent decades, aerial robots especially small UAVs and drones have witnessed tremendous improvements in terms of their structure, working methodology, flying features and navigation control. UAVs are highly utilized in a wide range of services such as photography, path planning, search and rescue, inspection of power lines and civil constructions, etc. This manuscript reports a wide overview and comprehensive survey of recent developments in commercially available UAV’s and gives a brief note on the progress and research covered in last 10 years. The research presents a roadmap to understand the successive development of advanced drones/ UAVs in terms of their geometric structure, flying mechanism, sensing and vision ability, aviation quality, path planning, intelligent behaviour and adoptability. A literature survey is conducted systematically on 254 retrieved articles published in the last 10 years and scaled down to 96 relevant articles. In these shortlisted articles, path planning, neural network, artificial intelligence, inspection, surveillance, tracking and identification, etc. are the most relevant methodologies or applications presented. The current research is concerned about the growth and impact of UAVs/drones in the society and also inspires the newbies to carry research in this field and propose new methods to select or equip the flying robot for a specific application in various fields. This article also assists researchers in understanding and evaluating their research work in the context of existing solutions. It also helps newcomers and pilots/practitioners to quickly gain an overview of the existing vast literature in the related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
兽先生发布了新的文献求助10
1秒前
SciGPT应助云无意采纳,获得10
1秒前
师德完成签到,获得积分20
2秒前
orixero应助枫影采纳,获得10
2秒前
Aaron完成签到,获得积分10
2秒前
IP190237完成签到,获得积分10
4秒前
于瑜与余发布了新的文献求助10
4秒前
英俊的铭应助行宇采纳,获得10
5秒前
dajin完成签到,获得积分10
6秒前
6秒前
搜集达人应助练习者采纳,获得10
7秒前
7秒前
8秒前
刘刘溜完成签到 ,获得积分10
9秒前
所所应助yujd采纳,获得30
9秒前
科研通AI2S应助于瑜与余采纳,获得10
11秒前
11秒前
顾矜应助安详鸿采纳,获得30
11秒前
12秒前
多情翠丝发布了新的文献求助10
12秒前
万能图书馆应助zero桥采纳,获得10
12秒前
夜猫放羊完成签到,获得积分10
13秒前
13秒前
SPF发布了新的文献求助30
15秒前
15秒前
15秒前
夜猫放羊发布了新的文献求助20
16秒前
17秒前
jzmupyj完成签到,获得积分10
18秒前
智挂东南枝完成签到,获得积分10
18秒前
18秒前
spinning发布了新的文献求助10
18秒前
18秒前
丁一完成签到,获得积分10
18秒前
eugene_sysu发布了新的文献求助10
19秒前
19秒前
乐观若之发布了新的文献求助20
20秒前
21秒前
祭音发布了新的文献求助10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156090
求助须知:如何正确求助?哪些是违规求助? 2807496
关于积分的说明 7873356
捐赠科研通 2465814
什么是DOI,文献DOI怎么找? 1312446
科研通“疑难数据库(出版商)”最低求助积分说明 630107
版权声明 601905