Impact of Intraoperative Data on Risk Prediction for Mortality After Intra-Abdominal Surgery

医学 接收机工作特性 逻辑回归 随机森林 机器学习 支持向量机 人工智能 队列 外科 内科学 计算机科学
作者
Xinyu Yan,Jeff Goldsmith,Sumit Mohan,Zachary A. Turnbull,Robert E. Freundlich,Frederic T. Billings,Ravi P. Kiran,Guohua Li,Minjae Kim
出处
期刊:Anesthesia & Analgesia [Lippincott Williams & Wilkins]
卷期号:134 (1): 102-113 被引量:16
标识
DOI:10.1213/ane.0000000000005694
摘要

BACKGROUND: Risk prediction models for postoperative mortality after intra-abdominal surgery have typically been developed using preoperative variables. It is unclear if intraoperative data add significant value to these risk prediction models. METHODS: With IRB approval, an institutional retrospective cohort of intra-abdominal surgery patients in the 2005 to 2015 American College of Surgeons National Surgical Quality Improvement Program was identified. Intraoperative data were obtained from the electronic health record. The primary outcome was 30-day mortality. We evaluated the performance of machine learning algorithms to predict 30-day mortality using: 1) baseline variables and 2) baseline + intraoperative variables. Algorithms evaluated were: 1) logistic regression with elastic net selection, 2) random forest (RF), 3) gradient boosting machine (GBM), 4) support vector machine (SVM), and 5) convolutional neural networks (CNNs). Model performance was evaluated using the area under the receiver operator characteristic curve (AUROC). The sample was randomly divided into a training/testing split with 80%/20% probabilities. Repeated 10-fold cross-validation identified the optimal model hyperparameters in the training dataset for each model, which were then applied to the entire training dataset to train the model. Trained models were applied to the test cohort to evaluate model performance. Statistical significance was evaluated using P < .05. RESULTS: The training and testing cohorts contained 4322 and 1079 patients, respectively, with 62 (1.4%) and 15 (1.4%) experiencing 30-day mortality, respectively. When using only baseline variables to predict mortality, all algorithms except SVM (area under the receiver operator characteristic curve [AUROC], 0.83 [95% confidence interval {CI}, 0.69–0.97]) had AUROC >0.9: GBM (AUROC, 0.96 [0.94–1.0]), RF (AUROC, 0.96 [0.92–1.0]), CNN (AUROC, 0.96 [0.92–0.99]), and logistic regression (AUROC, 0.95 [0.91–0.99]). AUROC significantly increased with intraoperative variables with CNN (AUROC, 0.97 [0.96–0.99]; P = .047 versus baseline), but there was no improvement with GBM (AUROC, 0.97 [0.95–0.99]; P = .3 versus baseline), RF (AUROC, 0.96 [0.93–1.0]; P = .5 versus baseline), and logistic regression (AUROC, 0.94 [0.90–0.99]; P = .6 versus baseline). CONCLUSIONS: Postoperative mortality is predicted with excellent discrimination in intra-abdominal surgery patients using only preoperative variables in various machine learning algorithms. The addition of intraoperative data to preoperative data also resulted in models with excellent discrimination, but model performance did not improve.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
无花果应助fantexi113采纳,获得10
1秒前
英俊的铭应助斯文的傲珊采纳,获得10
2秒前
和平完成签到 ,获得积分10
2秒前
13秒前
fzh完成签到,获得积分10
14秒前
fantexi113发布了新的文献求助10
18秒前
墨墨完成签到 ,获得积分10
20秒前
Bin_Liu发布了新的文献求助10
20秒前
点点完成签到 ,获得积分10
25秒前
又又完成签到,获得积分10
25秒前
一个小胖子完成签到,获得积分10
30秒前
笨笨忘幽完成签到,获得积分10
30秒前
Never stall完成签到 ,获得积分10
33秒前
CLTTT完成签到,获得积分10
36秒前
量子星尘发布了新的文献求助10
40秒前
hsrlbc完成签到,获得积分10
48秒前
先锋完成签到 ,获得积分10
52秒前
汉堡包应助李哈哈采纳,获得10
55秒前
蓝桉完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
李哈哈完成签到,获得积分10
1分钟前
deallyxyz完成签到 ,获得积分10
1分钟前
李哈哈发布了新的文献求助10
1分钟前
苹果树发布了新的文献求助10
1分钟前
单小芫完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
lixiniverson完成签到 ,获得积分10
1分钟前
邱屁屁完成签到,获得积分10
1分钟前
淡淡醉波wuliao完成签到 ,获得积分0
1分钟前
1分钟前
牛马完成签到 ,获得积分10
1分钟前
bkagyin应助fantexi113采纳,获得10
1分钟前
无花果应助科研通管家采纳,获得10
1分钟前
科目三应助jewel9采纳,获得10
1分钟前
苹果树完成签到,获得积分10
1分钟前
1分钟前
2分钟前
海的海完成签到 ,获得积分10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957101
求助须知:如何正确求助?哪些是违规求助? 3503148
关于积分的说明 11111393
捐赠科研通 3234212
什么是DOI,文献DOI怎么找? 1787802
邀请新用户注册赠送积分活动 870776
科研通“疑难数据库(出版商)”最低求助积分说明 802292