Impact of Intraoperative Data on Risk Prediction for Mortality After Intra-Abdominal Surgery

医学 接收机工作特性 逻辑回归 随机森林 机器学习 支持向量机 人工智能 队列 外科 内科学 计算机科学
作者
Xinyu Yan,Jeff Goldsmith,Sumit Mohan,Zachary A. Turnbull,Robert E. Freundlich,Frederic T. Billings,Ravi P. Kiran,Guohua Li,Minjae Kim
出处
期刊:Anesthesia & Analgesia [Lippincott Williams & Wilkins]
卷期号:134 (1): 102-113 被引量:16
标识
DOI:10.1213/ane.0000000000005694
摘要

BACKGROUND: Risk prediction models for postoperative mortality after intra-abdominal surgery have typically been developed using preoperative variables. It is unclear if intraoperative data add significant value to these risk prediction models. METHODS: With IRB approval, an institutional retrospective cohort of intra-abdominal surgery patients in the 2005 to 2015 American College of Surgeons National Surgical Quality Improvement Program was identified. Intraoperative data were obtained from the electronic health record. The primary outcome was 30-day mortality. We evaluated the performance of machine learning algorithms to predict 30-day mortality using: 1) baseline variables and 2) baseline + intraoperative variables. Algorithms evaluated were: 1) logistic regression with elastic net selection, 2) random forest (RF), 3) gradient boosting machine (GBM), 4) support vector machine (SVM), and 5) convolutional neural networks (CNNs). Model performance was evaluated using the area under the receiver operator characteristic curve (AUROC). The sample was randomly divided into a training/testing split with 80%/20% probabilities. Repeated 10-fold cross-validation identified the optimal model hyperparameters in the training dataset for each model, which were then applied to the entire training dataset to train the model. Trained models were applied to the test cohort to evaluate model performance. Statistical significance was evaluated using P < .05. RESULTS: The training and testing cohorts contained 4322 and 1079 patients, respectively, with 62 (1.4%) and 15 (1.4%) experiencing 30-day mortality, respectively. When using only baseline variables to predict mortality, all algorithms except SVM (area under the receiver operator characteristic curve [AUROC], 0.83 [95% confidence interval {CI}, 0.69–0.97]) had AUROC >0.9: GBM (AUROC, 0.96 [0.94–1.0]), RF (AUROC, 0.96 [0.92–1.0]), CNN (AUROC, 0.96 [0.92–0.99]), and logistic regression (AUROC, 0.95 [0.91–0.99]). AUROC significantly increased with intraoperative variables with CNN (AUROC, 0.97 [0.96–0.99]; P = .047 versus baseline), but there was no improvement with GBM (AUROC, 0.97 [0.95–0.99]; P = .3 versus baseline), RF (AUROC, 0.96 [0.93–1.0]; P = .5 versus baseline), and logistic regression (AUROC, 0.94 [0.90–0.99]; P = .6 versus baseline). CONCLUSIONS: Postoperative mortality is predicted with excellent discrimination in intra-abdominal surgery patients using only preoperative variables in various machine learning algorithms. The addition of intraoperative data to preoperative data also resulted in models with excellent discrimination, but model performance did not improve.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张凯茜发布了新的文献求助10
1秒前
共享精神应助000采纳,获得10
2秒前
天天快乐应助qing采纳,获得10
2秒前
AA发布了新的文献求助10
2秒前
斯文败类应助Miracle采纳,获得10
2秒前
刘恒超完成签到,获得积分20
3秒前
迷你的绿竹完成签到,获得积分20
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
ccc完成签到,获得积分10
5秒前
韩嘉玺发布了新的文献求助10
6秒前
7秒前
7秒前
爆米花应助顺心的老五采纳,获得10
7秒前
Limerencia完成签到,获得积分10
8秒前
外向渊思完成签到 ,获得积分10
8秒前
hcx完成签到 ,获得积分10
9秒前
Owen应助幽默眼神采纳,获得10
9秒前
大模型应助skevvecl采纳,获得10
9秒前
MTRQ完成签到,获得积分10
9秒前
天真安筠发布了新的文献求助10
10秒前
张凯茜完成签到,获得积分20
10秒前
zsr发布了新的文献求助10
11秒前
在水一方应助刘老师采纳,获得10
11秒前
12秒前
无奈青发布了新的文献求助10
12秒前
13秒前
时尚白凡完成签到 ,获得积分10
13秒前
小早完成签到,获得积分10
14秒前
CodeCraft应助不喝牛奶的猫采纳,获得10
14秒前
梓然完成签到,获得积分10
14秒前
14秒前
lan完成签到,获得积分10
15秒前
15秒前
Candice完成签到,获得积分10
15秒前
AY完成签到,获得积分10
16秒前
Gagaga完成签到,获得积分10
16秒前
耿怀肖发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131542
求助须知:如何正确求助?哪些是违规求助? 4333356
关于积分的说明 13500257
捐赠科研通 4170243
什么是DOI,文献DOI怎么找? 2286163
邀请新用户注册赠送积分活动 1287120
关于科研通互助平台的介绍 1228095