已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Comparison of deep learning-based emission-only attenuation correction methods for positron emission tomography

衰减校正 衰减 正电子发射断层摄影术 卷积神经网络 核医学 人工智能 计算机科学 相似性(几何) 人工神经网络 模式识别(心理学) 卷积(计算机科学) 迭代重建 物理 光学 医学 图像(数学)
作者
Donghwi Hwang,Seung Kwan Kang,Kyeong Yun Kim,Hongyoon Choi,Jae Sung Lee
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Nature]
卷期号:49 (6): 1833-1842 被引量:13
标识
DOI:10.1007/s00259-021-05637-0
摘要

PurposeThis study aims to compare two approaches using only emission PET data and a convolution neural network (CNN) to correct the attenuation (μ) of the annihilation photons in PET.MethodsOne of the approaches uses a CNN to generate μ-maps from the non-attenuation-corrected (NAC) PET images (μ-CNNNAC). In the other method, CNN is used to improve the accuracy of μ-maps generated using maximum likelihood estimation of activity and attenuation (MLAA) reconstruction (μ-CNNMLAA). We investigated the improvement in the CNN performance by combining the two methods (μ-CNNMLAA+NAC) and the suitability of μ-CNNNAC for providing the scatter distribution required for MLAA reconstruction. Image data from 18F-FDG (n = 100) or 68 Ga-DOTATOC (n = 50) PET/CT scans were used for neural network training and testing.ResultsThe error of the attenuation correction factors estimated using μ-CT and μ-CNNNAC was over 7%, but that of scatter estimates was only 2.5%, indicating the validity of the scatter estimation from μ-CNNNAC. However, CNNNAC provided less accurate bone structures in the μ-maps, while the best results in recovering the fine bone structures were obtained by applying CNNMLAA+NAC. Additionally, the μ-values in the lungs were overestimated by CNNNAC. Activity images (λ) corrected for attenuation using μ-CNNMLAA and μ-CNNMLAA+NAC were superior to those corrected using μ-CNNNAC, in terms of their similarity to λ-CT. However, the improvement in the similarity with λ-CT by combining the CNNNAC and CNNMLAA approaches was insignificant (percent error for lung cancer lesions, λ-CNNNAC = 5.45% ± 7.88%; λ-CNNMLAA = 1.21% ± 5.74%; λ-CNNMLAA+NAC = 1.91% ± 4.78%; percent error for bone cancer lesions, λ-CNNNAC = 1.37% ± 5.16%; λ-CNNMLAA = 0.23% ± 3.81%; λ-CNNMLAA+NAC = 0.05% ± 3.49%).ConclusionThe use of CNNNAC was feasible for scatter estimation to address the chicken-egg dilemma in MLAA reconstruction, but CNNMLAA outperformed CNNNAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
因几完成签到 ,获得积分10
1秒前
蓝胖子发布了新的文献求助10
3秒前
Fortune发布了新的文献求助10
3秒前
4秒前
刘笨笨发布了新的文献求助10
4秒前
5秒前
852发布了新的文献求助20
7秒前
8秒前
8秒前
9秒前
fffccclll完成签到,获得积分10
10秒前
蓝胖子发布了新的文献求助10
10秒前
刘笨笨完成签到,获得积分10
11秒前
小马甲应助hhw采纳,获得10
11秒前
刘cl发布了新的文献求助10
12秒前
15秒前
Smith.w发布了新的文献求助20
16秒前
17秒前
蓝胖子发布了新的文献求助10
18秒前
英俊的铭应助九湖夷上采纳,获得10
19秒前
Wang完成签到 ,获得积分10
19秒前
无花果应助筱崴崴采纳,获得10
20秒前
22秒前
Zy完成签到,获得积分20
23秒前
李健应助Moonlight采纳,获得10
24秒前
NPC关闭了NPC文献求助
24秒前
27秒前
蓝胖子发布了新的文献求助10
27秒前
27秒前
27秒前
28秒前
科研通AI2S应助起个破名采纳,获得10
28秒前
28秒前
29秒前
wanci应助平淡的雁桃采纳,获得10
30秒前
sl完成签到 ,获得积分10
31秒前
bioglia发布了新的文献求助10
31秒前
racill发布了新的文献求助10
32秒前
32秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229401
求助须知:如何正确求助?哪些是违规求助? 2877137
关于积分的说明 8197812
捐赠科研通 2544458
什么是DOI,文献DOI怎么找? 1374396
科研通“疑难数据库(出版商)”最低求助积分说明 646956
邀请新用户注册赠送积分活动 621749