Comparison of deep learning-based emission-only attenuation correction methods for positron emission tomography

衰减校正 衰减 正电子发射断层摄影术 卷积神经网络 核医学 人工智能 计算机科学 相似性(几何) 人工神经网络 模式识别(心理学) 卷积(计算机科学) 迭代重建 物理 光学 医学 图像(数学)
作者
Donghwi Hwang,Seung Kwan Kang,Kyeong Yun Kim,Hongyoon Choi,Jae Sung Lee
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:49 (6): 1833-1842 被引量:16
标识
DOI:10.1007/s00259-021-05637-0
摘要

PurposeThis study aims to compare two approaches using only emission PET data and a convolution neural network (CNN) to correct the attenuation (μ) of the annihilation photons in PET.MethodsOne of the approaches uses a CNN to generate μ-maps from the non-attenuation-corrected (NAC) PET images (μ-CNNNAC). In the other method, CNN is used to improve the accuracy of μ-maps generated using maximum likelihood estimation of activity and attenuation (MLAA) reconstruction (μ-CNNMLAA). We investigated the improvement in the CNN performance by combining the two methods (μ-CNNMLAA+NAC) and the suitability of μ-CNNNAC for providing the scatter distribution required for MLAA reconstruction. Image data from 18F-FDG (n = 100) or 68 Ga-DOTATOC (n = 50) PET/CT scans were used for neural network training and testing.ResultsThe error of the attenuation correction factors estimated using μ-CT and μ-CNNNAC was over 7%, but that of scatter estimates was only 2.5%, indicating the validity of the scatter estimation from μ-CNNNAC. However, CNNNAC provided less accurate bone structures in the μ-maps, while the best results in recovering the fine bone structures were obtained by applying CNNMLAA+NAC. Additionally, the μ-values in the lungs were overestimated by CNNNAC. Activity images (λ) corrected for attenuation using μ-CNNMLAA and μ-CNNMLAA+NAC were superior to those corrected using μ-CNNNAC, in terms of their similarity to λ-CT. However, the improvement in the similarity with λ-CT by combining the CNNNAC and CNNMLAA approaches was insignificant (percent error for lung cancer lesions, λ-CNNNAC = 5.45% ± 7.88%; λ-CNNMLAA = 1.21% ± 5.74%; λ-CNNMLAA+NAC = 1.91% ± 4.78%; percent error for bone cancer lesions, λ-CNNNAC = 1.37% ± 5.16%; λ-CNNMLAA = 0.23% ± 3.81%; λ-CNNMLAA+NAC = 0.05% ± 3.49%).ConclusionThe use of CNNNAC was feasible for scatter estimation to address the chicken-egg dilemma in MLAA reconstruction, but CNNMLAA outperformed CNNNAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
vvvvvv完成签到,获得积分10
1秒前
1秒前
曾经荔枝完成签到,获得积分10
1秒前
1秒前
yi完成签到,获得积分20
2秒前
所所应助Autumn采纳,获得10
2秒前
qingfeng发布了新的文献求助10
2秒前
朴素的士晋完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
小二郎应助ZXW采纳,获得10
3秒前
Luv_0完成签到,获得积分10
3秒前
科研通AI6应助666采纳,获得10
3秒前
lxq完成签到,获得积分10
4秒前
4秒前
五毛完成签到,获得积分10
4秒前
NexusExplorer应助洁净灵雁采纳,获得10
4秒前
蔺文博完成签到,获得积分10
4秒前
gxch完成签到,获得积分20
4秒前
好多好多鱼完成签到,获得积分10
4秒前
lzcnextdoor发布了新的文献求助10
5秒前
搜集达人应助自然的难摧采纳,获得10
5秒前
研友_VZG7GZ应助han采纳,获得10
6秒前
小黎关注了科研通微信公众号
6秒前
hehsk发布了新的文献求助10
6秒前
主将从现完成签到,获得积分10
6秒前
在水一方应助aaa采纳,获得10
6秒前
Ly完成签到,获得积分10
7秒前
龍焱发布了新的文献求助10
7秒前
qingfeng完成签到,获得积分10
7秒前
虚幻盼晴完成签到,获得积分10
8秒前
yoyoyoyo完成签到,获得积分10
8秒前
望望旺仔牛奶完成签到,获得积分10
8秒前
奇点完成签到 ,获得积分10
9秒前
Lucas应助丫丫采纳,获得10
9秒前
zero完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615303
求助须知:如何正确求助?哪些是违规求助? 4019099
关于积分的说明 12440991
捐赠科研通 3702052
什么是DOI,文献DOI怎么找? 2041414
邀请新用户注册赠送积分活动 1074129
科研通“疑难数据库(出版商)”最低求助积分说明 957743