Evaluation of PD-L1 Expression Level in Patients With Non-Small Cell Lung Cancer by 18F-FDG PET/CT Radiomics and Clinicopathological Characteristics

医学 接收机工作特性 无线电技术 逻辑回归 肺癌 单变量 阶段(地层学) 肿瘤科 队列 单变量分析 内科学 回顾性队列研究 癌症 放射科 多元分析 多元统计 机器学习 古生物学 生物 计算机科学
作者
Jihui Li,Shushan Ge,Shibiao Sang,Chunhong Hu,Shengming Deng
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:11 被引量:31
标识
DOI:10.3389/fonc.2021.789014
摘要

In the present study, we aimed to evaluate the expression of programmed death-ligand 1 (PD-L1) in patients with non-small cell lung cancer (NSCLC) by radiomic features of 18F-FDG PET/CT and clinicopathological characteristics.A total 255 NSCLC patients (training cohort: n = 170; validation cohort: n = 85) were retrospectively enrolled in the present study. A total of 80 radiomic features were extracted from pretreatment 18F-FDG PET/CT images. Clinicopathologic features were compared between the two cohorts. The least absolute shrinkage and selection operator (LASSO) regression was used to select the most useful prognostic features in the training cohort. Radiomics signature and clinicopathologic risk factors were incorporated to develop a prediction model by using multivariable logistic regression analysis. The receiver operating characteristic (ROC) curve was used to assess the prognostic factors.A total of 80 radiomic features were extracted in the training dataset. In the univariate analysis, the expression of PD-L1 in lung tumors was significantly correlated with the radiomic signature, histologic type, Ki-67, SUVmax, MTV, and TLG (p< 0.05, respectively). However, the expression of PD-L1 was not correlated with age, TNM stage, and history of smoking (p> 0.05). Moreover, the prediction model for PD-L1 expression level over 1% and 50% that combined the radiomic signature and clinicopathologic features resulted in an area under the curve (AUC) of 0.762 and 0.814, respectively.A prediction model based on PET/CT images and clinicopathological characteristics provided a novel strategy for clinicians to screen the NSCLC patients who could benefit from the anti-PD-L1 immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hope完成签到,获得积分10
2秒前
西番雅发布了新的文献求助10
4秒前
小猪完成签到 ,获得积分10
5秒前
123456发布了新的文献求助10
5秒前
沧海医僧笑完成签到,获得积分20
5秒前
6秒前
苹果酸奶完成签到 ,获得积分10
6秒前
6秒前
FashionBoy应助咕噜采纳,获得30
6秒前
奋斗的盼柳完成签到 ,获得积分10
7秒前
共享精神应助福建彭于晏采纳,获得10
7秒前
CodeCraft应助咕噜咕噜采纳,获得30
9秒前
10秒前
11秒前
13秒前
西番雅完成签到,获得积分10
13秒前
酷波er应助沧海医僧笑采纳,获得30
16秒前
程克勤完成签到,获得积分10
18秒前
772829完成签到 ,获得积分10
18秒前
净净子完成签到,获得积分10
19秒前
ttxpx驳回了ding应助
23秒前
罗又柔应助醉熏的盼曼采纳,获得10
24秒前
zxx完成签到 ,获得积分10
24秒前
26秒前
傻子与白痴完成签到,获得积分10
28秒前
不秃头完成签到,获得积分10
30秒前
FOREST发布了新的文献求助10
31秒前
sci梦发布了新的文献求助10
32秒前
34秒前
不配.应助ponytail采纳,获得10
36秒前
小雨关注了科研通微信公众号
36秒前
不配.应助诚心爆米花采纳,获得20
36秒前
loudly完成签到,获得积分10
38秒前
WangRui完成签到,获得积分10
44秒前
KIKI完成签到,获得积分0
44秒前
搞怪的从雪关注了科研通微信公众号
44秒前
rouhan完成签到,获得积分10
45秒前
传奇3应助Gilbert采纳,获得10
46秒前
47秒前
yjf完成签到,获得积分10
48秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138572
求助须知:如何正确求助?哪些是违规求助? 2789520
关于积分的说明 7791526
捐赠科研通 2445903
什么是DOI,文献DOI怎么找? 1300715
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079