Evaluation of PD-L1 Expression Level in Patients With Non-Small Cell Lung Cancer by 18F-FDG PET/CT Radiomics and Clinicopathological Characteristics

医学 接收机工作特性 无线电技术 逻辑回归 肺癌 单变量 阶段(地层学) 肿瘤科 队列 单变量分析 内科学 回顾性队列研究 癌症 放射科 多元分析 多元统计 机器学习 古生物学 生物 计算机科学
作者
Jihui Li,Shushan Ge,Shibiao Sang,Chunhong Hu,Shengming Deng
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:11 被引量:31
标识
DOI:10.3389/fonc.2021.789014
摘要

In the present study, we aimed to evaluate the expression of programmed death-ligand 1 (PD-L1) in patients with non-small cell lung cancer (NSCLC) by radiomic features of 18F-FDG PET/CT and clinicopathological characteristics.A total 255 NSCLC patients (training cohort: n = 170; validation cohort: n = 85) were retrospectively enrolled in the present study. A total of 80 radiomic features were extracted from pretreatment 18F-FDG PET/CT images. Clinicopathologic features were compared between the two cohorts. The least absolute shrinkage and selection operator (LASSO) regression was used to select the most useful prognostic features in the training cohort. Radiomics signature and clinicopathologic risk factors were incorporated to develop a prediction model by using multivariable logistic regression analysis. The receiver operating characteristic (ROC) curve was used to assess the prognostic factors.A total of 80 radiomic features were extracted in the training dataset. In the univariate analysis, the expression of PD-L1 in lung tumors was significantly correlated with the radiomic signature, histologic type, Ki-67, SUVmax, MTV, and TLG (p< 0.05, respectively). However, the expression of PD-L1 was not correlated with age, TNM stage, and history of smoking (p> 0.05). Moreover, the prediction model for PD-L1 expression level over 1% and 50% that combined the radiomic signature and clinicopathologic features resulted in an area under the curve (AUC) of 0.762 and 0.814, respectively.A prediction model based on PET/CT images and clinicopathological characteristics provided a novel strategy for clinicians to screen the NSCLC patients who could benefit from the anti-PD-L1 immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1234完成签到,获得积分10
刚刚
CDCYANG完成签到,获得积分10
刚刚
秦磊完成签到,获得积分10
刚刚
YI发布了新的文献求助10
1秒前
1秒前
DamenS发布了新的文献求助10
1秒前
dushicheng发布了新的文献求助10
2秒前
菠萝炒饭应助lxy采纳,获得10
2秒前
cxh完成签到,获得积分20
3秒前
33完成签到,获得积分20
3秒前
奋斗的土豆完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
7秒前
chenming发布了新的文献求助10
7秒前
Apricot完成签到,获得积分10
8秒前
Wu完成签到 ,获得积分10
8秒前
鸭鸭发布了新的文献求助10
9秒前
飘零枫叶发布了新的文献求助10
9秒前
9秒前
XIAO完成签到,获得积分10
9秒前
10秒前
CodeCraft应助Souliko采纳,获得10
11秒前
wanci应助qinchuanniu采纳,获得10
11秒前
11秒前
effort发布了新的文献求助10
12秒前
sunaq发布了新的文献求助10
12秒前
13秒前
14秒前
打打应助顺利紫山采纳,获得10
14秒前
bofu完成签到,获得积分10
16秒前
mouxq发布了新的文献求助10
17秒前
害羞的冷雪完成签到,获得积分10
17秒前
NexusExplorer应助Slyvia2025采纳,获得10
17秒前
裴仰纳完成签到 ,获得积分10
18秒前
高雯发布了新的文献求助10
18秒前
菠萝炒饭应助lxy采纳,获得10
18秒前
Coffey完成签到 ,获得积分10
19秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954228
求助须知:如何正确求助?哪些是违规求助? 3500273
关于积分的说明 11098748
捐赠科研通 3230782
什么是DOI,文献DOI怎么找? 1786143
邀请新用户注册赠送积分活动 869824
科研通“疑难数据库(出版商)”最低求助积分说明 801638