Evaluation of PD-L1 Expression Level in Patients With Non-Small Cell Lung Cancer by 18F-FDG PET/CT Radiomics and Clinicopathological Characteristics

医学 接收机工作特性 无线电技术 逻辑回归 肺癌 单变量 阶段(地层学) 肿瘤科 队列 单变量分析 内科学 回顾性队列研究 癌症 放射科 多元分析 多元统计 机器学习 古生物学 生物 计算机科学
作者
Jihui Li,Shushan Ge,Shibiao Sang,Chunhong Hu,Shengming Deng
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:11 被引量:31
标识
DOI:10.3389/fonc.2021.789014
摘要

In the present study, we aimed to evaluate the expression of programmed death-ligand 1 (PD-L1) in patients with non-small cell lung cancer (NSCLC) by radiomic features of 18F-FDG PET/CT and clinicopathological characteristics.A total 255 NSCLC patients (training cohort: n = 170; validation cohort: n = 85) were retrospectively enrolled in the present study. A total of 80 radiomic features were extracted from pretreatment 18F-FDG PET/CT images. Clinicopathologic features were compared between the two cohorts. The least absolute shrinkage and selection operator (LASSO) regression was used to select the most useful prognostic features in the training cohort. Radiomics signature and clinicopathologic risk factors were incorporated to develop a prediction model by using multivariable logistic regression analysis. The receiver operating characteristic (ROC) curve was used to assess the prognostic factors.A total of 80 radiomic features were extracted in the training dataset. In the univariate analysis, the expression of PD-L1 in lung tumors was significantly correlated with the radiomic signature, histologic type, Ki-67, SUVmax, MTV, and TLG (p< 0.05, respectively). However, the expression of PD-L1 was not correlated with age, TNM stage, and history of smoking (p> 0.05). Moreover, the prediction model for PD-L1 expression level over 1% and 50% that combined the radiomic signature and clinicopathologic features resulted in an area under the curve (AUC) of 0.762 and 0.814, respectively.A prediction model based on PET/CT images and clinicopathological characteristics provided a novel strategy for clinicians to screen the NSCLC patients who could benefit from the anti-PD-L1 immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
大意的乐菱完成签到,获得积分10
2秒前
爆米花应助伟伟采纳,获得10
2秒前
2秒前
2秒前
研究生end应助一路硕博采纳,获得50
2秒前
3秒前
3秒前
可爱的函函应助哈哈哈哈采纳,获得10
3秒前
标致曼香发布了新的文献求助10
3秒前
3秒前
ss完成签到,获得积分10
4秒前
zy完成签到,获得积分10
4秒前
小菜鸟发布了新的文献求助10
5秒前
海棠发布了新的文献求助10
5秒前
GCD发布了新的文献求助10
6秒前
现代破茧发布了新的文献求助30
6秒前
激情的明杰完成签到,获得积分10
6秒前
哭泣尔安完成签到 ,获得积分10
6秒前
安静雅阳发布了新的文献求助10
7秒前
Gitope完成签到,获得积分10
7秒前
饱满的秋白完成签到,获得积分10
7秒前
8秒前
8秒前
FashionBoy应助刘一帆采纳,获得10
9秒前
9秒前
积极无敌完成签到 ,获得积分10
10秒前
10秒前
tt发布了新的文献求助10
10秒前
米基哈发布了新的文献求助10
11秒前
深情安青应助zz采纳,获得10
11秒前
12秒前
科研通AI6应助济民财采纳,获得10
12秒前
vxdfff发布了新的文献求助10
13秒前
七月发布了新的文献求助10
13秒前
14秒前
子车茗应助zzzzzp采纳,获得30
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Spatial Econometrics: Spatial Autoregressive Models (World Scientific Series on Econometrics and Statistics Book 1) 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5111177
求助须知:如何正确求助?哪些是违规求助? 4319430
关于积分的说明 13457835
捐赠科研通 4149833
什么是DOI,文献DOI怎么找? 2273805
邀请新用户注册赠送积分活动 1275926
关于科研通互助平台的介绍 1214145