A demonstration of a multi-method variable selection approach for treatment selection: Recommending cognitive-behavioral versus psychodynamic therapy for mild to moderate adult depression

萧条(经济学) 焦虑 评定量表 外向与内向 临床心理学 随机对照试验 心理学 医学 精神科 内科学 人格 五大性格特征 社会心理学 发展心理学 宏观经济学 经济
作者
Zachary D. Cohen,Thomas T. Kim,Henricus L. Van,Jack Dekker,Ellen Driessen
标识
DOI:10.31234/osf.io/njus6
摘要

Objective: We use a new variable selection procedure for treatment selection which generates treatment recommendations based on pre-treatment characteristics for adults with mild-to-moderate depression deciding between cognitive behavioral (CBT) versus psychodynamic therapy (PDT).Method: Data are drawn from a randomized comparison of CBT versus PDT for depression (N=167, 71%-female, mean-age=39.6). The approach combines four different statistical techniques to identify patient characteristics associated consistently with differential treatment response. Variables are combined to generate predictions indicating each individual’s optimal-treatment. The average outcomes for patients who received their indicated treatment versus those who did not were compared retrospectively to estimate model utility.Results: Of 49 predictors examined, depression severity, anxiety sensitivity, extraversion, and psychological treatment-needs were included in the final model. The average post-treatment Hamilton-Depression-Rating-Scale score was 1.6 points lower (95%CI=[0.5:2.8]; d=0.21) for those who received their indicated-treatment compared to non-indicated. Among the 60% of patients with the strongest treatment recommendations, that advantage grew to 2.6 (95%CI=[1.4:3.7]; d=0.37). Conclusions: Variable selection procedures differ in their characterization of the importance of predictive variables. Attending to consistently-indicated predictors may be sensible when constructing treatment selection models. The small-N and lack of separate validation sample indicate a need for prospective tests before this model is used.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
禾中发布了新的文献求助10
刚刚
函王发布了新的文献求助10
刚刚
KennyS发布了新的文献求助10
刚刚
KD发布了新的文献求助10
1秒前
1秒前
v321发布了新的文献求助30
1秒前
微微发布了新的文献求助10
2秒前
lvshiwen发布了新的文献求助10
2秒前
小圆不头大完成签到,获得积分10
2秒前
2秒前
3秒前
你的风筝应助czc采纳,获得10
3秒前
wang完成签到,获得积分10
3秒前
烟花应助Seciy采纳,获得10
4秒前
烂漫的猕猴桃完成签到,获得积分10
5秒前
认真的大楚完成签到,获得积分10
5秒前
5秒前
8秒前
谁家那小谁完成签到,获得积分10
8秒前
李lll发布了新的文献求助10
8秒前
善上完成签到,获得积分10
9秒前
10秒前
罗颂子发布了新的文献求助10
10秒前
11秒前
v321完成签到,获得积分10
11秒前
爱笑的阿飞哥完成签到,获得积分10
11秒前
Owen应助zyyz采纳,获得10
11秒前
13秒前
科研通AI2S应助DimWhite采纳,获得10
13秒前
92年的矿泉水完成签到,获得积分10
13秒前
13秒前
永远明媚发布了新的文献求助10
13秒前
faiting发布了新的文献求助100
13秒前
秦春歌完成签到,获得积分10
13秒前
SciGPT应助冷酷小海豚采纳,获得10
13秒前
splatoon完成签到,获得积分10
14秒前
14秒前
张晓飞发布了新的文献求助100
14秒前
15秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958345
求助须知:如何正确求助?哪些是违规求助? 3504604
关于积分的说明 11118997
捐赠科研通 3235815
什么是DOI,文献DOI怎么找? 1788530
邀请新用户注册赠送积分活动 871225
科研通“疑难数据库(出版商)”最低求助积分说明 802600