Tailoring Disordered/Ordered Phases to Revisit the Degradation Mechanism of High‐Voltage LiNi0.5Mn1.5O4 Spinel Cathode Materials

材料科学 尖晶石 退火(玻璃) 溶解 电化学 阴极 结构稳定性 相(物质) 化学工程 氧化物 离子 电极 化学 冶金 物理化学 有机化学 工程类 结构工程
作者
Hua‐Bin Sun,Anyang Hu,Stephanie Spence,Chunguang Kuai,Dong Hou,Linqin Mu,Jue Liu,Luxi Li,Cheng‐Jun Sun,Sami Sainio,Dennis Nordlund,Wei Luo,Yunhui Huang,Feng Lin
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:32 (21) 被引量:35
标识
DOI:10.1002/adfm.202112279
摘要

Abstract In the spinel oxide cathode family, LiNi 0.5 Mn 1.5 O 4 (LNMO) shows a high operating voltage (≈4.7 V vs Li/Li + ) and excellent Li‐ion mobility with stable 3D conducting channels. Ni/Mn cation disordered and ordered phases usually coexist in LNMO materials, and they have distinct structural and electrochemical properties, resulting in different battery performances for LNMO materials with different phase compositions. Identifying the correlation between phase compositions and electrochemical properties is of significance to the improvement of battery performance and understanding of degradation mechanisms. Herein, the disordered/ordered phase compositions in LNMO materials are tailored by post‐annealing strategies and their impacts on electrochemical performance and degradation mechanisms from the surface to the bulk are systematically investigated. The ordered phase increases rapidly as Mn 3+ is oxidized to Mn 4+ through a post‐annealing process. LNMO with an intermediate fraction of disordered and ordered phases gives rise to improved cycling stability. This article further reports that a high ordered phase fraction can preferentially protect Ni from dissolution during cycling. However, these results suggest that the transition metal dissolution and surface structural change of LNMO do not exhibit a direct correlation with cycling stability. These results indicate the capacity fading mainly correlates with the bulk structural distortion, leading to decreased Li‐ion kinetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cindy发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
刚刚
1秒前
笑笑完成签到,获得积分10
1秒前
2秒前
默默的芙完成签到,获得积分10
2秒前
xm发布了新的文献求助10
2秒前
2秒前
3秒前
陈佳琪完成签到,获得积分10
3秒前
LU完成签到,获得积分10
3秒前
3秒前
3秒前
lwei发布了新的文献求助10
3秒前
设计狂魔应助九川采纳,获得30
3秒前
LiShin发布了新的文献求助10
4秒前
song完成签到,获得积分10
5秒前
Phoebe1996发布了新的文献求助10
5秒前
yannis2020发布了新的文献求助10
5秒前
小猴发布了新的文献求助10
6秒前
酷酷的老太完成签到 ,获得积分20
6秒前
6秒前
锣大炮完成签到,获得积分10
7秒前
maqin完成签到,获得积分10
7秒前
小王完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
科研通AI2S应助lwei采纳,获得10
7秒前
幽默的念双完成签到,获得积分10
7秒前
正直冰露发布了新的文献求助10
8秒前
标致小伙发布了新的文献求助10
8秒前
8秒前
pinkdon完成签到,获得积分10
8秒前
5477完成签到,获得积分10
8秒前
9秒前
lins完成签到,获得积分20
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762