清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Shear capacity prediction of FRP-RC beams using single and ensenble ExPlainable Machine learning models

纤维增强塑料 结构工程 钢筋混凝土 均方误差 剪切(地质) 限制 钢筋 梁(结构) 预测建模 近似误差 计算机科学 材料科学 工程类 数学 机器学习 统计 算法 复合材料 机械工程
作者
Tadesse G. Wakjira,Abathar Al-Hamrani,Usama Ebead,Wael Alnahhal
出处
期刊:Composite Structures [Elsevier]
卷期号:287: 115381-115381 被引量:63
标识
DOI:10.1016/j.compstruct.2022.115381
摘要

Corrosion in steel reinforcement is a central issue behind the severe deterioration of existing reinforced concrete (RC) structures. Nowadays, fiber-reinforced polymer (FRP) is increasingly being used as a viable alternative to conventional steel reinforcement due to its anti-corrosive nature. The accurate estimation of the shear capacity of FRP reinforced concrete (FRP-RC) elements is critical for a reliable and accurate design and performance assessment of such members. However, existing shear models are often developed based on a limited database and important factors, limiting their prediction effectiveness. Hence, this paper presents novel machine learning (ML) based models for predicting the shear capacity of FRP-RC beams. A total of eleven ML models starting from the simplest white-box models to advanced black-box models are developed based on a large database of FRP-RC beams. Such investigation helps in examining the necessity of complex ML models and identify the most accurate predictive model for the shear capacity of FRP-RC beam. Moreover, a unified framework known as SHapley Additive exPlanation (SHAP) is used to identify the most important factors that influence the shear capacity prediction of FRP-RC beams. Among all investigated ML models, the extreme gradient boosting (xgBoost) model showed the best performance with the lowest error (mean absolute error, root mean squared eror, and mean absolute percent error) and highest coefficient of determination (R2), Kling-Gupta efficiency, and index of agreement between the experimental and predicted shear capacities. Moreover, the accuracy of the proposed xgBoost model was compared with that of the available code and guideline equations and resulted in a superior prediction capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tutu完成签到,获得积分10
4秒前
30秒前
HJJHJH完成签到,获得积分20
34秒前
HJJHJH发布了新的文献求助30
37秒前
汉堡包应助Nan采纳,获得10
38秒前
49秒前
Nan发布了新的文献求助10
53秒前
Nan驳回了李爱国应助
1分钟前
ChenYX完成签到 ,获得积分10
1分钟前
zhang完成签到,获得积分20
1分钟前
樱桃猴子应助白华苍松采纳,获得10
1分钟前
顺利的小蚂蚁完成签到,获得积分10
2分钟前
2分钟前
2分钟前
鱼太闲发布了新的文献求助10
2分钟前
Guo完成签到 ,获得积分10
2分钟前
小马甲应助鱼太闲采纳,获得10
2分钟前
2分钟前
单薄绮露完成签到,获得积分10
3分钟前
3分钟前
3分钟前
文艺猫咪发布了新的文献求助10
3分钟前
3分钟前
樱桃猴子应助白华苍松采纳,获得10
3分钟前
3分钟前
Nan发布了新的文献求助10
3分钟前
3分钟前
4分钟前
行走完成签到,获得积分10
4分钟前
马马马完成签到 ,获得积分10
4分钟前
4分钟前
小蘑菇应助文艺猫咪采纳,获得10
4分钟前
4分钟前
4分钟前
ChenYX发布了新的文献求助10
4分钟前
Lucas应助白华苍松采纳,获得10
5分钟前
5分钟前
雷九万班完成签到 ,获得积分0
5分钟前
5分钟前
青出于蓝蔡完成签到,获得积分10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526584
求助须知:如何正确求助?哪些是违规求助? 3107022
关于积分的说明 9282092
捐赠科研通 2804622
什么是DOI,文献DOI怎么找? 1539534
邀请新用户注册赠送积分活动 716583
科研通“疑难数据库(出版商)”最低求助积分说明 709581