Accelerating Dynamic MRI Reconstruction Using Adaptive Sequentially Truncated Higher-Order Singular Value Decomposition

奇异值分解 张量(固有定义) 数学 计算机科学 算法 秩(图论) 迭代重建 数学优化 阈值 人工智能 组合数学 图像(数学) 纯数学
作者
Yang Li,Qiannan Shen,Mingfeng Jiang,Lingyan Zhu,Yongming Li,Pin Wang,Tie‐Qiang Li
出处
期刊:Current Medical Imaging Reviews [Bentham Science Publishers]
卷期号:18 (7): 719-730
标识
DOI:10.2174/1573405618666220303101900
摘要

Background: Dynamic magnetic resonance imaging (dMRI) plays an important role in cardiac perfusion and functional clinical exams. However, further applications are limited by the speed of data acquisition. Objective: A low-rank plus sparse decomposition approach is often introduced for reconstructing dynamic magnetic resonance imaging (dMRI) from highly under-sampling K-space data. In this paper, the reconstruction problem of DMR is transformed into a low-rank tensor plus sparse tensor recovery problem. Methods: A sequentially truncated higher-order singular value decomposition method is proposed to quickly approximate the low-rank tensor space structure and learn sparse components by adding a tensor kernel norm to the low-rank tensor and a l1 norm to the sparse tensor to constrain the two parts at the same time. The optimization problem is solved by using the iterative soft-thresholding algorithm; therefore, under the premise of ensuring the accuracy of the data, the amount of computation can be effectively reduced. Results: Compared with the state-of-the-art methods, the experimental results show that the proposed method can achieve better performance in terms of reconstruction speed and reconstruction quality on 3D and 4D dMRI datasets. Conclusion: The multidimensional MRI time series is represented by the tensor tool and decomposed into low rank tensor terms and sparse tensor terms. The low rank spatial structure is captured by the adaptive ST-HOSVD for fast approximation and the sparse component is constrained efficiently with a sparsity transform and l1 norm. The optimization problem is solved by an iterative soft-thresholding algorithm. Through extensive 3D and 4D dMRI experiments, it is demonstrated that our method can achieve superior reconstruction performance and efficiency compared with the other three state-of-theart methods reported in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助Zenglongying采纳,获得10
1秒前
1秒前
scq发布了新的文献求助10
2秒前
2秒前
3秒前
yaozi发布了新的文献求助10
3秒前
Rewi_Zhang发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
KKIII发布了新的文献求助10
5秒前
海盗是我最爱的宝宝完成签到,获得积分10
6秒前
笔墨留香完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
Jasper应助sure采纳,获得10
8秒前
8秒前
关键词完成签到,获得积分10
8秒前
10秒前
SciGPT应助yaozi采纳,获得10
10秒前
11秒前
0orange发布了新的文献求助10
11秒前
YUMI发布了新的文献求助10
12秒前
飞飞飞发布了新的文献求助30
12秒前
12秒前
追寻的问玉完成签到 ,获得积分10
12秒前
16秒前
16秒前
KKIII完成签到,获得积分10
17秒前
17秒前
yaozi完成签到,获得积分10
17秒前
18秒前
LZQ应助温暖元容采纳,获得10
18秒前
liubin发布了新的社区帖子
19秒前
bigxianyu发布了新的文献求助30
20秒前
洛尘完成签到,获得积分10
23秒前
玉尘发布了新的文献求助10
23秒前
桃紫完成签到,获得积分10
23秒前
孔苏关注了科研通微信公众号
23秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
What’s the Evidence? An Investigation into Teacher Quality 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3701566
求助须知:如何正确求助?哪些是违规求助? 3251755
关于积分的说明 9876150
捐赠科研通 2963720
什么是DOI,文献DOI怎么找? 1625279
邀请新用户注册赠送积分活动 769926
科研通“疑难数据库(出版商)”最低求助积分说明 742630