Accelerating Dynamic MRI Reconstruction Using Adaptive Sequentially Truncated Higher-Order Singular Value Decomposition

奇异值分解 张量(固有定义) 数学 计算机科学 算法 秩(图论) 迭代重建 数学优化 阈值 人工智能 组合数学 图像(数学) 纯数学
作者
Yang Li,Qiannan Shen,Mingfeng Jiang,Lingyan Zhu,Yongming Li,Pin Wang,Tie‐Qiang Li
出处
期刊:Current Medical Imaging Reviews [Bentham Science]
卷期号:18 (7): 719-730
标识
DOI:10.2174/1573405618666220303101900
摘要

Background: Dynamic magnetic resonance imaging (dMRI) plays an important role in cardiac perfusion and functional clinical exams. However, further applications are limited by the speed of data acquisition. Objective: A low-rank plus sparse decomposition approach is often introduced for reconstructing dynamic magnetic resonance imaging (dMRI) from highly under-sampling K-space data. In this paper, the reconstruction problem of DMR is transformed into a low-rank tensor plus sparse tensor recovery problem. Methods: A sequentially truncated higher-order singular value decomposition method is proposed to quickly approximate the low-rank tensor space structure and learn sparse components by adding a tensor kernel norm to the low-rank tensor and a l1 norm to the sparse tensor to constrain the two parts at the same time. The optimization problem is solved by using the iterative soft-thresholding algorithm; therefore, under the premise of ensuring the accuracy of the data, the amount of computation can be effectively reduced. Results: Compared with the state-of-the-art methods, the experimental results show that the proposed method can achieve better performance in terms of reconstruction speed and reconstruction quality on 3D and 4D dMRI datasets. Conclusion: The multidimensional MRI time series is represented by the tensor tool and decomposed into low rank tensor terms and sparse tensor terms. The low rank spatial structure is captured by the adaptive ST-HOSVD for fast approximation and the sparse component is constrained efficiently with a sparsity transform and l1 norm. The optimization problem is solved by an iterative soft-thresholding algorithm. Through extensive 3D and 4D dMRI experiments, it is demonstrated that our method can achieve superior reconstruction performance and efficiency compared with the other three state-of-theart methods reported in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
情怀应助从容飞凤采纳,获得10
1秒前
Singularity应助科研通管家采纳,获得10
1秒前
Singularity应助科研通管家采纳,获得10
1秒前
2秒前
DBY发布了新的文献求助10
2秒前
Singularity应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
自然的城发布了新的文献求助10
3秒前
务实伊完成签到,获得积分20
4秒前
Jenny发布了新的文献求助200
4秒前
善学以致用应助yehata采纳,获得10
4秒前
5秒前
z.完成签到,获得积分10
6秒前
7秒前
阿東完成签到 ,获得积分20
7秒前
7秒前
精明的涵雁完成签到,获得积分10
7秒前
承影发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
燕燕发布了新的文献求助10
10秒前
柒柒关注了科研通微信公众号
11秒前
11秒前
橘子橙发布了新的文献求助10
11秒前
思源应助自然的城采纳,获得10
12秒前
专注的远山完成签到,获得积分20
13秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Handbook of Qualitative Research 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129368
求助须知:如何正确求助?哪些是违规求助? 2780183
关于积分的说明 7746679
捐赠科研通 2435368
什么是DOI,文献DOI怎么找? 1294055
科研通“疑难数据库(出版商)”最低求助积分说明 623518
版权声明 600542