已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep reinforcement learning-based joint task and energy offloading in UAV-aided 6G intelligent edge networks

计算机科学 强化学习 任务(项目管理) 能源消耗 GSM演进的增强数据速率 边缘计算 马尔可夫决策过程 移动边缘计算 无线传感器网络 边缘设备 实时计算 分布式计算 人工智能 计算机网络 云计算 马尔可夫过程 统计 生物 操作系统 经济 管理 数学 生态学
作者
Zhipeng Cheng,Minghui Liwang,Ning Chen,Lianfen Huang,Xiaojiang Du,Mohsen Guizani
出处
期刊:Computer Communications [Elsevier]
卷期号:192: 234-244 被引量:17
标识
DOI:10.1016/j.comcom.2022.06.017
摘要

Edge networks are expected to play an important role in 6G where machine learning-based methods are widely applied, which promote the concept of Edge Intelligence. Meanwhile, Unmanned Aerial Vehicle (UAV)-enabled aerial network is significant in 6G networks to achieve seamless coverage and super-connectivity. To this end, a joint task and energy offloading problem is studied under a UAV-aided and energy-constrained intelligent edge network, consisting of a high altitude platform (HAP), multiple UAVs, and on-ground fog computing nodes (FCNs). To guarantee the energy supply of UAVs and FCNs, both simultaneous wireless information and power transfer (SWIPT), as well as laser charging techniques are considered. Specifically, we investigate a scenario where each UAV needs to execute a computation-intensive task during each time slot and can be powered by the laser beam transmitted from the HAP. Due to the limited computation resources, each UAV can offload part of the task and energy to the FCNs for collaborative computing, to reduce local energy consumption and the overall task execution delay by adopting SWIPT. Considering the dynamics of the network, e.g., the time-varying locations of UAVs and available computation resources of FCNs, the problem is formulated as a cooperative multi-agent Markov game for UAVs, which aims to maximize the total system utility, by optimizing the task partitioning and power allocation strategies of each UAV, regarding task size, average delay and energy consumption of task execution. To tackle this problem, we propose a multi-agent soft actor–critic (MASAC)-based approach to resolve the problem. Numerical simulation results prove the superiority of our proposed approach as compared with benchmark methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KaMoria完成签到,获得积分10
1秒前
2秒前
satohoang发布了新的文献求助10
2秒前
Zfx发布了新的文献求助10
2秒前
drtianyunhong完成签到,获得积分10
3秒前
3秒前
科研通AI2S应助巫马尔槐采纳,获得10
5秒前
叶颤完成签到,获得积分10
5秒前
Pinocchio发布了新的文献求助10
5秒前
吃饭饭完成签到,获得积分10
6秒前
啊浩o丶发布了新的文献求助10
7秒前
田様应助Leo采纳,获得10
7秒前
科研小白完成签到,获得积分10
7秒前
8秒前
10秒前
星辰大海应助柳叶小弯刀采纳,获得10
11秒前
13秒前
Xiaojiu发布了新的文献求助10
13秒前
郭文博发布了新的文献求助10
14秒前
跳跃的以蕊完成签到,获得积分20
15秒前
yyyyyyf发布了新的文献求助200
17秒前
24秒前
yy家的小哥哥完成签到,获得积分10
25秒前
吴宵发布了新的文献求助10
28秒前
123完成签到,获得积分10
28秒前
Aurora发布了新的文献求助10
29秒前
29秒前
Owen应助柏林采纳,获得10
30秒前
持之关注了科研通微信公众号
32秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
Ava应助科研通管家采纳,获得10
36秒前
bkagyin应助科研通管家采纳,获得10
36秒前
传奇3应助科研通管家采纳,获得10
36秒前
orixero应助科研通管家采纳,获得10
36秒前
Orange应助科研通管家采纳,获得10
36秒前
ding应助科研通管家采纳,获得10
36秒前
ding应助科研通管家采纳,获得10
36秒前
汉堡包应助senpaiser采纳,获得10
37秒前
任白993应助mmyhn采纳,获得10
40秒前
43秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3397631
求助须知:如何正确求助?哪些是违规求助? 3006740
关于积分的说明 8822279
捐赠科研通 2693996
什么是DOI,文献DOI怎么找? 1475576
科研通“疑难数据库(出版商)”最低求助积分说明 682450
邀请新用户注册赠送积分活动 675884