化学
单线态氧
激发态
溶剂
氧气
分子间力
分子
化学物理
光化学
单重态
计算化学
原子物理学
有机化学
物理
作者
Frederik Thorning,Petr Henke,Peter R. Ogilby
摘要
Singlet oxygen, O2(a1Δg), the lowest excited electronic state of molecular oxygen, plays an important role in a range of chemical and biological processes. In liquid solvents, the reactions of singlet oxygen with a solute kinetically compete with solvent-mediated deactivation that yields the ground electronic state of oxygen, O2(X3Σg–). In this regard, the key parameter is the solvent-mediated lifetime of singlet oxygen, which embodies fundamental physical principles ranging from intermolecular interactions that perturb the forbidden O2(a1Δg) → O2(X3Σg–) transition to the transfer of oxygen’s excitation energy into the vibrational modes of a solvent molecule M. Extensive research performed by the global community on this oxygen-related issue over the past ∼50 years reflects its significance. Unfortunately, a satisfactory quantitative understanding of this unique solvent effect has remained elusive thus far. In temperature-dependent studies, we have quantified the singlet oxygen lifetime in common aromatic and aliphatic organic solvents, including partially deuterated molecules that exploit the H/D solvent isotope effect on the lifetime. We now account for experimental data, including previously intractable data, using a model that exploits both weak and strong coupling in the M–O2 complex to accommodate the roles that M plays to (1) induce the forbidden O2(a1Δg) → O2(X3Σg–) transition and (2) accept the excitation energy of O2(a1Δg). As such, our approach brings us appreciably closer to an accurate and predictive ab initio solution for the long-standing oxygen-dependent problem that, in turn, should be relevant for a host of other molecular systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI