亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Efficient hyperspectral image segmentation for biosecurity scanning using knowledge distillation from multi-head teacher

计算机科学 高光谱成像 分割 水准点(测量) 人工智能 深度学习 图像(数学) 蒸馏 基本事实 机器学习 模式识别(心理学) 地质学 化学 大地测量学 有机化学
作者
Minh Hieu Phan,Son Lam Phung,Khoa Luu,Abdesselam Bouzerdoum
出处
期刊:Neurocomputing [Elsevier]
卷期号:504: 189-203 被引量:2
标识
DOI:10.1016/j.neucom.2022.06.095
摘要

Foreign species can deteriorate the environment and the economy of a country. To automatically monitor biosecurity threats at country borders, this paper investigates compact deep networks for accurate and real-time object segmentation for hyperspectral images. To this end, knowledge distillation (KD) approaches compress the model by distilling the knowledge of a large teacher network to a compact student network. However, when the student is over-compressed, the performance of standard KD methods degrades significantly due to the large capacity gap between the teacher and the student. This gap can be addressed by adding medium-sized teacher assistants, but training them incurs significant computation and hence is impractical. To address this problem, this paper proposes a new framework called Knowledge Distillation from Multi-head Teacher (KDM), which distills the knowledge of a multi-head teacher to the student. By encapsulating multiple teachers in a single network, our proposed KDM assists the learning of a very compact student and significantly reduces the training time. We also introduce Bio-HSI, a new large benchmark hyperspectral image dataset of 3,125 high-resolution images with dense segmentation ground truth. This new, large dataset can be expected to advance research on deep models for hyperspectral image segmentation. Evaluated on this dataset, the student trained via our KDM has 762 times fewer parameters than the state-of-the-art segmentation model (i.e., HRNet), while achieving competitive accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
GavinYi完成签到,获得积分10
2秒前
小马甲应助琪琪采纳,获得10
3秒前
luyajie发布了新的文献求助10
4秒前
4秒前
5秒前
舒心谷雪完成签到 ,获得积分10
7秒前
小二郎应助刺猬采纳,获得10
7秒前
8秒前
Aleksibob完成签到,获得积分10
9秒前
SciGPT应助丰富的松鼠采纳,获得10
12秒前
喜悦宫苴完成签到,获得积分10
13秒前
13秒前
15秒前
乐乐应助Tracy采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得10
19秒前
英姑应助渡己。采纳,获得10
19秒前
烟花应助科研通管家采纳,获得50
19秒前
JamesPei应助科研通管家采纳,获得10
19秒前
归尘应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
归尘应助科研通管家采纳,获得10
19秒前
研友_VZG7GZ应助科研通管家采纳,获得10
19秒前
田様应助科研通管家采纳,获得10
19秒前
我是老大应助科研通管家采纳,获得10
19秒前
Hello应助科研通管家采纳,获得10
19秒前
月子淇应助科研通管家采纳,获得10
19秒前
mingjing完成签到 ,获得积分10
21秒前
Chenzr完成签到,获得积分10
22秒前
赘婿应助lively采纳,获得10
23秒前
CodeCraft应助loi9采纳,获得10
27秒前
29秒前
30秒前
31秒前
nini完成签到,获得积分10
34秒前
34秒前
34秒前
34秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488365
求助须知:如何正确求助?哪些是违规求助? 4587236
关于积分的说明 14413292
捐赠科研通 4518528
什么是DOI,文献DOI怎么找? 2475911
邀请新用户注册赠送积分活动 1461433
关于科研通互助平台的介绍 1434314