Efficient hyperspectral image segmentation for biosecurity scanning using knowledge distillation from multi-head teacher

计算机科学 高光谱成像 分割 水准点(测量) 人工智能 深度学习 图像(数学) 蒸馏 基本事实 机器学习 模式识别(心理学) 地质学 化学 大地测量学 有机化学
作者
Minh Hieu Phan,Son Lam Phung,Khoa Luu,Abdesselam Bouzerdoum
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:504: 189-203 被引量:2
标识
DOI:10.1016/j.neucom.2022.06.095
摘要

Foreign species can deteriorate the environment and the economy of a country. To automatically monitor biosecurity threats at country borders, this paper investigates compact deep networks for accurate and real-time object segmentation for hyperspectral images. To this end, knowledge distillation (KD) approaches compress the model by distilling the knowledge of a large teacher network to a compact student network. However, when the student is over-compressed, the performance of standard KD methods degrades significantly due to the large capacity gap between the teacher and the student. This gap can be addressed by adding medium-sized teacher assistants, but training them incurs significant computation and hence is impractical. To address this problem, this paper proposes a new framework called Knowledge Distillation from Multi-head Teacher (KDM), which distills the knowledge of a multi-head teacher to the student. By encapsulating multiple teachers in a single network, our proposed KDM assists the learning of a very compact student and significantly reduces the training time. We also introduce Bio-HSI, a new large benchmark hyperspectral image dataset of 3,125 high-resolution images with dense segmentation ground truth. This new, large dataset can be expected to advance research on deep models for hyperspectral image segmentation. Evaluated on this dataset, the student trained via our KDM has 762 times fewer parameters than the state-of-the-art segmentation model (i.e., HRNet), while achieving competitive accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助罗大壮采纳,获得10
1秒前
猫猫最可爱完成签到 ,获得积分10
1秒前
六六完成签到,获得积分10
1秒前
香蕉觅云应助JILIGULU采纳,获得10
2秒前
科研通AI5应助李仲一采纳,获得10
2秒前
2秒前
2秒前
顾矜应助吴世勋采纳,获得10
3秒前
xyx945完成签到,获得积分10
3秒前
豆豆完成签到,获得积分10
3秒前
3秒前
zzholiver发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
4秒前
诚心凝旋发布了新的文献求助30
4秒前
4秒前
xdc完成签到,获得积分10
4秒前
4秒前
zero完成签到 ,获得积分10
4秒前
niu完成签到,获得积分10
4秒前
孙博完成签到,获得积分10
5秒前
w8816完成签到,获得积分10
5秒前
6秒前
在水一方应助杨文静采纳,获得10
6秒前
齐俞如完成签到,获得积分10
7秒前
含糊的山兰完成签到,获得积分10
7秒前
7秒前
7秒前
jjdgangan发布了新的文献求助10
7秒前
栖木发布了新的文献求助10
8秒前
王二哈发布了新的文献求助10
8秒前
Orange应助banksy采纳,获得10
8秒前
HHHHHN发布了新的文献求助10
8秒前
8秒前
科研通AI5应助叶伟帮采纳,获得10
8秒前
AhhHuang应助何姗悦采纳,获得10
9秒前
9秒前
suiwuya发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572570
求助须知:如何正确求助?哪些是违规求助? 3993286
关于积分的说明 12361873
捐赠科研通 3666367
什么是DOI,文献DOI怎么找? 2020752
邀请新用户注册赠送积分活动 1054961
科研通“疑难数据库(出版商)”最低求助积分说明 942355