Efficient hyperspectral image segmentation for biosecurity scanning using knowledge distillation from multi-head teacher

计算机科学 高光谱成像 分割 水准点(测量) 人工智能 深度学习 图像(数学) 蒸馏 基本事实 机器学习 模式识别(心理学) 地质学 化学 大地测量学 有机化学
作者
Minh Hieu Phan,Son Lam Phung,Khoa Luu,Abdesselam Bouzerdoum
出处
期刊:Neurocomputing [Elsevier]
卷期号:504: 189-203 被引量:2
标识
DOI:10.1016/j.neucom.2022.06.095
摘要

Foreign species can deteriorate the environment and the economy of a country. To automatically monitor biosecurity threats at country borders, this paper investigates compact deep networks for accurate and real-time object segmentation for hyperspectral images. To this end, knowledge distillation (KD) approaches compress the model by distilling the knowledge of a large teacher network to a compact student network. However, when the student is over-compressed, the performance of standard KD methods degrades significantly due to the large capacity gap between the teacher and the student. This gap can be addressed by adding medium-sized teacher assistants, but training them incurs significant computation and hence is impractical. To address this problem, this paper proposes a new framework called Knowledge Distillation from Multi-head Teacher (KDM), which distills the knowledge of a multi-head teacher to the student. By encapsulating multiple teachers in a single network, our proposed KDM assists the learning of a very compact student and significantly reduces the training time. We also introduce Bio-HSI, a new large benchmark hyperspectral image dataset of 3,125 high-resolution images with dense segmentation ground truth. This new, large dataset can be expected to advance research on deep models for hyperspectral image segmentation. Evaluated on this dataset, the student trained via our KDM has 762 times fewer parameters than the state-of-the-art segmentation model (i.e., HRNet), while achieving competitive accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助zyyyy采纳,获得10
刚刚
ding应助幸福的雨采纳,获得10
刚刚
3秒前
孔难破完成签到,获得积分10
3秒前
Hello应助双马尾小男生2采纳,获得10
3秒前
yangyang发布了新的文献求助30
4秒前
peace完成签到 ,获得积分10
6秒前
小蘑菇应助xzccc采纳,获得10
7秒前
yao应助十七采纳,获得10
7秒前
8秒前
万能图书馆应助喜悦的虔采纳,获得10
10秒前
10秒前
JM发布了新的文献求助30
11秒前
顾矜应助跋扈采纳,获得10
11秒前
13秒前
sunshine2025完成签到,获得积分10
13秒前
Mess发布了新的文献求助10
15秒前
18秒前
哈哈哈完成签到,获得积分10
18秒前
18秒前
xzccc发布了新的文献求助10
19秒前
22秒前
22秒前
wuha完成签到,获得积分10
23秒前
畅快访旋应助JM采纳,获得30
24秒前
24秒前
26秒前
跋扈发布了新的文献求助10
27秒前
28秒前
28秒前
Lucas应助生椰拿铁采纳,获得10
28秒前
wwww发布了新的文献求助20
28秒前
30秒前
跋扈完成签到,获得积分10
31秒前
33秒前
zyyyy发布了新的文献求助10
33秒前
心空完成签到,获得积分10
33秒前
顾矜应助科学家采纳,获得10
33秒前
前尘似梦完成签到 ,获得积分10
34秒前
curtisness应助zyyyy采纳,获得10
39秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Discourse, Identities and Genres in Corporate Communication 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3359630
求助须知:如何正确求助?哪些是违规求助? 2982355
关于积分的说明 8703259
捐赠科研通 2664021
什么是DOI,文献DOI怎么找? 1458787
科研通“疑难数据库(出版商)”最低求助积分说明 675243
邀请新用户注册赠送积分活动 666331