🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你你。这个春天,让互助之光璀璨绽放!查看详情

Feasibility study of fast intensity‐modulated proton therapy dose prediction method using deep neural networks for prostate cancer

质子疗法 前列腺癌 核医学 剂量学 人工神经网络 癌症 人工智能 计算机科学 医学物理学 医学 放射治疗 内科学 放射科
作者
Wei Wang,Yu Chang,Yilin Liu,Zhikai Liang,Yicheng Liao,Bin Qin,Xu Liu,Zhiyong Yang
出处
期刊:Medical Physics [Wiley]
卷期号:49 (8): 5451-5463 被引量:10
标识
DOI:10.1002/mp.15702
摘要

Compared to the pencil-beam algorithm, the Monte-Carlo (MC) algorithm is more accurate for dose calculation but time-consuming in proton therapy. To solve this problem, this study uses deep learning to provide fast 3D dose prediction for prostate cancer patients treated with intensity-modulated proton therapy (IMPT).A novel recurrent U-net (RU-net) architecture was trained to predict the 3D dose distribution. Doses, CT images, and beam spot information from IMPT plans were used to train the RU-net with a five-fold cross-validation. However, predicting the complicated dose properties of the IMPT plan is difficult for neural networks. Instead of the peak-monitor unit (MU) model, this work develops the multi-MU model that adopted more comprehensive inputs and was trained with a combinational loss function. The dose difference between the prediction dose and Monte Carlo (MC) dose was evaluated with gamma analysis, dice similarity coefficient (DSC), and dose-volume histogram (DVH) metrics. The MC dropout was also added to the network to quantify the uncertainty of the model.Compared to the peak-MU model, the multi-MU model led to smaller mean absolute errors (3.03% vs. 2.05%, p = 0.005), higher gamma-passing rate (2 mm, 3%: 97.42% vs. 93.69%, p = 0.005), higher dice similarity coefficient, and smaller relative DVH metrics error (clinical target volume (CTV) D98% : 3.03% vs. 6.08%, p = 0.017; in Bladder V30: 3.08% vs. 5.28%, p = 0.028; and in Bladder V20: 3.02% vs. 4.42%, p = 0.017). Considering more prior knowledge, the multi-MU model had better-predicted accuracy with a prediction time of less than half a second for each fold. The mean uncertainty value of the multi-MU model is 0.46%, with a dropout rate of 10%.This method was a nearly real-time IMPT dose prediction algorithm with accuracy comparable to the pencil beam (PB) analytical algorithms used in prostate cancer. This RU-net might be used in plan robustness optimization and robustness evaluation in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助阿跃采纳,获得10
刚刚
丹布里发布了新的文献求助20
刚刚
林云夕发布了新的文献求助10
刚刚
刚刚
badbaby完成签到 ,获得积分10
1秒前
遇见馅儿饼完成签到,获得积分10
1秒前
胡桃桃完成签到,获得积分20
1秒前
荀鹤子完成签到 ,获得积分10
2秒前
3秒前
彭于晏应助剑舞红颜笑采纳,获得10
3秒前
3秒前
4秒前
小透明举报FRANKFANG求助涉嫌违规
4秒前
4秒前
胡桃桃发布了新的文献求助10
5秒前
5秒前
chillin完成签到,获得积分10
6秒前
万能图书馆应助雪白凡双采纳,获得10
7秒前
7秒前
高高书白发布了新的文献求助10
8秒前
超级尔白发布了新的文献求助30
8秒前
早日毕业完成签到 ,获得积分10
8秒前
小二郎应助王涉采纳,获得10
8秒前
SciGPT应助怕孤独的战斗机采纳,获得10
8秒前
Jun完成签到,获得积分10
9秒前
9秒前
博修发布了新的文献求助10
10秒前
小常完成签到 ,获得积分10
11秒前
哈哈哈发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
paojiao不辣完成签到,获得积分20
12秒前
12秒前
13秒前
13秒前
13秒前
14秒前
粥粥完成签到 ,获得积分10
14秒前
斯文败类应助胡桃桃采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
Facharztprüfung Kardiologie 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3596869
求助须知:如何正确求助?哪些是违规求助? 3164214
关于积分的说明 9547912
捐赠科研通 2870671
什么是DOI,文献DOI怎么找? 1576432
邀请新用户注册赠送积分活动 740703
科研通“疑难数据库(出版商)”最低求助积分说明 724340