[Construction of a predictive model for early acute kidney injury risk in intensive care unit septic shock patients based on machine learning].

降钙素原 医学 感染性休克 急性肾损伤 重症监护室 接收机工作特性 阿帕奇II 机械通风 重症监护医学 血液滤过 沙发评分 肾脏替代疗法 肌酐 休克(循环) 急诊医学 内科学 败血症 血液透析
作者
Suzhen Zhang,Sujuan Tang,Rong Shi,Manchen Zhu,Jianguo Liu,Qinghe Hu,Cuiping Hao
出处
期刊:PubMed 卷期号:34 (3): 255-259
标识
DOI:10.3760/cma.j.cn121430-20211126-01790
摘要

To analyze the risk factors of acute kidney injury (AKI) in patients with septic shock in intensive care unit (ICU), construct a predictive model, and explore the predictive value of the predictive model.The clinical data of patients with septic shock who were hospitalized in the ICU of the Affiliated Hospital of Jining Medical College from April 2015 to June 2019 were retrospectively analyzed. According to whether the patients had AKI within 7 days of admission to the ICU, they were divided into AKI group and non-AKI group. 70% of the cases were randomly selected as the training set for building the model, and the remaining 30% of the cases were used as the validation set. XGBoost model was used to integrate relevant parameters to predict the risk of AKI in patients with septic shock. The predictive ability was assessed through receiver operator characteristic curve (ROC curve), and was correlated with acute physiology and chronic health evaluation II (APACHE II), sequential organ failure assessment (SOFA), procalcitonin (PCT) and other comparative verification models to verify the predictive value.A total of 303 patients with septic shock were enrolled, including 153 patients with AKI and 150 patients without AKI. The incidence of AKI was 50.50%. Compared with the non-AKI group, the AKI group had higher APACHE II score, SOFA score and blood lactate (Lac), higher dose of norepinephrine (NE), higher proportion of mechanical ventilation, and tachycardiac. In the XGBoost prediction model of AKI risk in septic shock patients, the top 10 features were serum creatinine (SCr) level at ICU admission, NE use, drinking history, albumin, serum sodium, C-reactive protein (CRP), Lac, body mass index (BMI), platelet count (PLT), and blood urea nitrogen (BUN) levels. Area under the ROC curve (AUC) of the XGBoost model for predicting the risk of AKI in patients with septic shock was 0.816, with a sensitivity of 73.3%, a specificity of 71.7%, and an accuracy of 72.5%. Compared with the APACHE II score, SOFA score and PCT, the performance of the model improved significantly. The calibration curve of the model showed that the goodness of fit of the XGBoost model was higher than the other scores (the calibration curve had the lowest score, with a score of 0.205).Compared with the commonly used clinical scores, the XGBoost model can more accurately predict the risk of AKI in patients with septic shock, which helps to make appropriate diagnosis, treatment and follow-up strategies while predicting the prognosis of patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kid1412完成签到 ,获得积分10
1秒前
LU完成签到,获得积分10
1秒前
小蘑菇应助R先生采纳,获得50
1秒前
1秒前
小嘎完成签到 ,获得积分10
2秒前
2秒前
2秒前
小虎发布了新的文献求助30
2秒前
3秒前
superworm1完成签到,获得积分10
3秒前
不懂事的小孩完成签到,获得积分10
3秒前
张瑶完成签到,获得积分10
3秒前
chloe完成签到 ,获得积分10
3秒前
桐桐应助申小萌采纳,获得10
4秒前
星星泡饭完成签到,获得积分10
4秒前
健忘曼云完成签到,获得积分10
4秒前
晶晶妹妹发布了新的文献求助10
4秒前
4秒前
通~发布了新的文献求助10
5秒前
5秒前
xiaohongmao完成签到,获得积分10
5秒前
科研通AI5应助6680668采纳,获得10
6秒前
6秒前
卡卡发布了新的文献求助10
7秒前
8秒前
欢呼鼠标发布了新的文献求助10
8秒前
appearance发布了新的文献求助10
8秒前
奋斗的凡完成签到 ,获得积分10
8秒前
ice完成签到 ,获得积分10
9秒前
junc完成签到,获得积分10
9秒前
小小完成签到,获得积分20
9秒前
11秒前
12秒前
R先生完成签到,获得积分10
12秒前
小土豆完成签到,获得积分10
12秒前
申小萌完成签到,获得积分10
12秒前
饭小心发布了新的文献求助10
12秒前
kevindeng完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762