Adversarial malware sample generation method based on the prototype of deep learning detector

恶意软件 计算机科学 对抗制 深度学习 可执行文件 人工智能 机器学习 字节 对抗性机器学习 计算机安全 操作系统
作者
Yanchen Qiao,Weizhe Zhang,Zhicheng Tian,Laurence T. Yang,Yang Liu,Mamoun Alazab
出处
期刊:Computers & Security [Elsevier]
卷期号:119: 102762-102762 被引量:7
标识
DOI:10.1016/j.cose.2022.102762
摘要

The deep learning methods had been proved to be effective for malware detection in the past. However, the recent studies show that deep learning models are vulnerable to adversarial attacks. Thus, the malware detection models based on deep learning face the threat of adversarial examples. As a popular case of adversarial examples, adversarial images are usually generated by adding unrecognizable perturbations to original pictures. When applying the same method to the windows PE (Portable Executable) malware, the original structure cannot be destroyed and the original functions of PE malware need to be preserved. Most existing windows adversarial malware generation works are derived from adversarial image methods with some adaptive modifications such as inserting perturbations in the slack space of the PE file. The both generation methods have some similarities but also many differences. Thus, directly using the methods of adversarial images to create malware effects the efficiency and fooling rate. In this paper, we overcome these issues by proposing a method for generating windows adversarial malware in PE format based on prototype samples of deep learning models. The prototype samples are the most typical ones of a certain category of the classification models. With the characteristic of the prototype samples, the bytes of the prototype samples are added as perturbations to the malware samples. This way can fast generate adversarial malware that could fool the target model. The proposed method is evaluated on a real world dataset of malware. Promising results show that the method can fool the deep learning based malware detection models with a high rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
盛yyyy完成签到,获得积分10
1秒前
2秒前
liuxl完成签到,获得积分10
2秒前
2秒前
Agoni完成签到,获得积分10
3秒前
苏卿应助lm0703采纳,获得10
3秒前
孙非完成签到,获得积分10
4秒前
JOY发布了新的文献求助10
4秒前
通达完成签到,获得积分10
4秒前
illycoco_zzz完成签到,获得积分10
6秒前
6秒前
I_won_t完成签到,获得积分10
7秒前
搜集达人应助chenyutong采纳,获得10
8秒前
gaugua完成签到,获得积分10
8秒前
9秒前
bjyx发布了新的文献求助20
9秒前
斯文以蓝完成签到,获得积分10
10秒前
您好发布了新的文献求助10
10秒前
FashionBoy应助lx采纳,获得10
11秒前
Eagler67发布了新的文献求助10
11秒前
Hello应助gaugua采纳,获得10
12秒前
22完成签到 ,获得积分10
12秒前
顾矜应助缓慢钢笔采纳,获得10
13秒前
yangs发布了新的文献求助10
14秒前
quhayley应助重要半兰采纳,获得10
14秒前
西贝完成签到,获得积分10
15秒前
15秒前
宁少爷应助WuCola采纳,获得50
15秒前
zhe完成签到 ,获得积分10
16秒前
liu发布了新的文献求助20
16秒前
16秒前
17秒前
勤劳怜寒完成签到,获得积分20
17秒前
舒心莫言完成签到,获得积分10
17秒前
牛幻香完成签到,获得积分10
19秒前
ggggggg发布了新的文献求助10
19秒前
科研通AI2S应助拼搏向上采纳,获得10
19秒前
热情的橘子完成签到,获得积分10
19秒前
文艺的樱完成签到,获得积分20
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155565
求助须知:如何正确求助?哪些是违规求助? 2806679
关于积分的说明 7870461
捐赠科研通 2465012
什么是DOI,文献DOI怎么找? 1312079
科研通“疑难数据库(出版商)”最低求助积分说明 629860
版权声明 601892